HYPERSPECTRAL AND LIDAR DATA LAND-USE CLASSIFICATION USING PARALLEL TRANSFORMERS

被引:7
|
作者
Hu, Yuxuan [1 ,2 ]
He, Hao [1 ,2 ]
Weng, Lubin [1 ]
机构
[1] Chinese Acad Sci, State Key Laborotary Pattern Recnognit, Inst Automat, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
关键词
Hyperspectral; LiDAR; data fusion; transformer; cross-modal; FUSION;
D O I
10.1109/IGARSS46834.2022.9884696
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
It has been proved that the fusion of hyperspectral and LiDAR data can effectively improve the performance of landuse classification. Most recent models have novel architectures which treat hyperspectral and LiDAR data equally and convolutional neural networks are widely used for extracting features of hyperspectral data. We argue that we should pay more attention to hyperspectral data and improve feature extraction tools. This paper proposes a simple yet effective model with parallel transformers. Transformers are powerful in feature extraction and feature fusion. One transformer acts as a hyperspectral image feature extractor, while the other transformer is responsible for capturing cross-modal interactions. Experiments on Houston dataset and MUUFL Gulfport dataset demonstrate that the proposed model has significantly better performance than other state-of-the-art models.
引用
收藏
页码:703 / 706
页数:4
相关论文
共 50 条
  • [1] Hierarchical Land-Use Classification Using Optical Imagery and LiDAR Data
    Yoon, Chang-rak
    Kim, Kyun-ok
    Shin, Jung-sub
    Lee, Hong-ro
    Hwang, Chi-jung
    [J]. 2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 2746 - +
  • [2] Pixel- and feature-level fusion of hyperspectral and lidar data for urban land-use classification
    Man, Qixia
    Dong, Pinliang
    Guo, Huadong
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (06) : 1618 - 1644
  • [3] Optimal Decision Fusion for Urban Land-Use/Land-Cover Classification Based on Adaptive Differential Evolution Using Hyperspectral and LiDAR Data
    Zhong, Yanfei
    Cao, Qiong
    Zhao, Ji
    Ma, Ailong
    Zhao, Bei
    Zhang, Liangpei
    [J]. REMOTE SENSING, 2017, 9 (08)
  • [4] FUSION OF LIDAR, HYPERSPECTRAL AND RGB DATA FOR URBAN LAND USE AND LAND COVER CLASSIFICATION
    Sukhanov, Sergey
    Budylskii, Dmitrii
    Tankoyeu, Ivan
    Heremans, Roel
    Debes, Christian
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3864 - 3867
  • [5] Land-cover classification using both hyperspectral and LiDAR data
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    Phinn, Stuart
    [J]. INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2015, 6 (03) : 189 - 215
  • [6] RANDOM FORESTS-BASED FEATURE SELECTION FOR LAND-USE CLASSIFICATION USING LIDAR DATA AND ORTHOIMAGERY
    Guan, Haiyan
    Yu, Jun
    Li, Jonathan
    Luo, Lun
    [J]. XXII ISPRS CONGRESS, TECHNICAL COMMISSION VII, 2012, 39 (B7): : 203 - 208
  • [7] HYPERSPECTRAL DATA FOR LAND USE/LAND COVER CLASSIFICATION
    Vijayan, Divya V.
    Shankar, G. Ravi
    Shankar, T. Ravi
    [J]. ISPRS TECHNICAL COMMISSION VIII SYMPOSIUM, 2014, 40-8 : 991 - 995
  • [8] Land-use/land-cover classification with multispectral and hyperspectral E0-1 data
    Xu, Bing
    Gong, Peng
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2007, 73 (08): : 955 - 965
  • [9] INVESTIGATIONS ON THE POTENTIAL OF HYPERSPECTRAL AND SENTINEL-2 DATA FOR LAND-COVER / LAND-USE CLASSIFICATION
    Weinmann, M.
    Maier, P. M.
    Florath, J.
    Weidner, U.
    [J]. ISPRS TC I MID-TERM SYMPOSIUM INNOVATIVE SENSING - FROM SENSORS TO METHODS AND APPLICATIONS, 2018, 4-1 : 155 - 162
  • [10] Fusion of Hyperspectral and LiDAR Data Using Discriminant Correlation Analysis for Land Cover Classification
    Jahan, Farah
    Zhou, Jun
    Awrangjeb, Mohammad
    Gao, Yongsheng
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (10) : 3905 - 3917