HYPERSPECTRAL AND LIDAR DATA LAND-USE CLASSIFICATION USING PARALLEL TRANSFORMERS

被引:7
|
作者
Hu, Yuxuan [1 ,2 ]
He, Hao [1 ,2 ]
Weng, Lubin [1 ]
机构
[1] Chinese Acad Sci, State Key Laborotary Pattern Recnognit, Inst Automat, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
关键词
Hyperspectral; LiDAR; data fusion; transformer; cross-modal; FUSION;
D O I
10.1109/IGARSS46834.2022.9884696
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
It has been proved that the fusion of hyperspectral and LiDAR data can effectively improve the performance of landuse classification. Most recent models have novel architectures which treat hyperspectral and LiDAR data equally and convolutional neural networks are widely used for extracting features of hyperspectral data. We argue that we should pay more attention to hyperspectral data and improve feature extraction tools. This paper proposes a simple yet effective model with parallel transformers. Transformers are powerful in feature extraction and feature fusion. One transformer acts as a hyperspectral image feature extractor, while the other transformer is responsible for capturing cross-modal interactions. Experiments on Houston dataset and MUUFL Gulfport dataset demonstrate that the proposed model has significantly better performance than other state-of-the-art models.
引用
下载
收藏
页码:703 / 706
页数:4
相关论文
共 50 条
  • [21] ESTIMATION OF LAND-USE IN AN URBANIZED LANDSCAPE USING LIDAR INTENSITY DATA: A REGIONAL SCALE APPROACH
    Singh, Kunwar K.
    Vogler, John B.
    Meentemeyer, Ross K.
    GEOSPATIAL DATA AND GEOVISUALIZATION: ENVIRONMENT, SECURITY, AND SOCIETY, 2010, 38
  • [22] URBAN LAND COVER CLASSIFICATION USING HYPERSPECTRAL DATA
    Hegde, Gaurav
    Ahamed, J. Mohammed
    Hebbar, R.
    Raj, Uday
    ISPRS TECHNICAL COMMISSION VIII SYMPOSIUM, 2014, 40-8 : 751 - 754
  • [23] URBAN LAND-USE CLASSIFICATION
    SHAPIRO, ID
    LAND ECONOMICS, 1959, 35 (02) : 149 - 155
  • [24] LAND-USE CLASSIFICATION SCHEMES
    ANDERSON, JR
    PHOTOGRAMMETRIC ENGINEERING, 1971, 37 (04): : 379 - &
  • [25] Land-Use Classification Using Convolutional Neural Networks
    A. M. Stepchenko
    Automatic Control and Computer Sciences, 2021, 55 : 358 - 367
  • [26] Land-Use Classification Using Taxi GPS Traces
    Pan, Gang
    Qi, Guande
    Wu, Zhaohui
    Zhang, Daqing
    Li, Shijian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2013, 14 (01) : 113 - 123
  • [27] Land-Use Classification Using Convolutional Neural Networks
    Stepchenko, A. M.
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2021, 55 (04) : 358 - 367
  • [28] LAND-USE CLASSIFICATION USING FINITE ELEMENT MACHINES
    Pereira, D. R.
    Papa, J. P.
    Papa, L. P.
    Pisani, R. J.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 7316 - 7319
  • [29] Fusion of Airborne Discrete-Return LiDAR and Hyperspectral Data for Land Cover Classification
    Luo, Shezhou
    Wang, Cheng
    Xi, Xiaohuan
    Zeng, Hongcheng
    Li, Dong
    Xia, Shaobo
    Wang, Pinghua
    REMOTE SENSING, 2016, 8 (01)
  • [30] Artificial Neural Network Approach for Land Cover Classification of Fused Hyperspectral and Lidar Data
    Giampouras, Paris
    Charou, Eleni
    Kesidis, Anastasios
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2013, 2013, 412 : 255 - 261