Hierarchical Land-Use Classification Using Optical Imagery and LiDAR Data

被引:0
|
作者
Yoon, Chang-rak [1 ]
Kim, Kyun-ok [1 ]
Shin, Jung-sub [2 ]
Lee, Hong-ro [2 ]
Hwang, Chi-jung [2 ]
机构
[1] ETRI, Spatial Informat Res Team, 161 Gajeong Dong, Taejon 305350, South Korea
[2] Chungnam Natl Univ, Dept Comp Sci, Chungsan, North Korea
关键词
D O I
10.1109/IGARSS.2006.706
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
It is difficult to apply the statistical classification of optical imagery with spectral information to identify and distinguish the land-use information because the input data is highly correlated to each other event though labeled information to characterize the class distributions is typically sparse. The advent of LiDAR data with very accurate elevation information to identify and distinguish 3-dimensional informative features has given tremendous interest in the remote sensing community. In this paper, we propose new classification approach designed to integrate optical imagery and LiDAR data. The proposed method mixes the point-based classification for the LiDAR data and the statistical classification for the optical imagery. Clustering generates several class features from the elevation information of LiDAR data. The class features are used to define discriminant functions for a land class, a building class, and a tree class combined with the input data. Statistical classification generates several class features, such as the grass classes, the soil classes, the water classes, and the road classes from the spectral information of optical imagery. The class features from the LiDAR data and the optical imagery are hierarchically combined to characterize land-use information.
引用
收藏
页码:2746 / +
页数:2
相关论文
共 50 条
  • [1] HYPERSPECTRAL AND LIDAR DATA LAND-USE CLASSIFICATION USING PARALLEL TRANSFORMERS
    Hu, Yuxuan
    He, Hao
    Weng, Lubin
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 703 - 706
  • [2] RANDOM FORESTS-BASED FEATURE SELECTION FOR LAND-USE CLASSIFICATION USING LIDAR DATA AND ORTHOIMAGERY
    Guan, Haiyan
    Yu, Jun
    Li, Jonathan
    Luo, Lun
    [J]. XXII ISPRS CONGRESS, TECHNICAL COMMISSION VII, 2012, 39 (B7): : 203 - 208
  • [3] LAND-USE CLASSIFICATION UTILIZING INFRARED SCANNING IMAGERY
    BROWN, RE
    HOLZ, RK
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 1976, 42 (10): : 1303 - 1314
  • [4] LAND-USE CLASSIFICATION IN CENTRAL SPAIN USING SIR-A AND MSS IMAGERY
    HORGAN, GW
    GLASBEY, CA
    SORIA, SL
    GOZALO, JNC
    ALONSO, FG
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1992, 13 (15) : 2839 - 2848
  • [5] A Hierarchical Object-oriented Urban Land Cover Classification Using WorldView-2 Imagery and Airborne LiDAR data
    Wu, M. F.
    Sun, Z. C.
    Yang, B.
    Yu, S. S.
    [J]. 6TH DIGITAL EARTH SUMMIT, 2016, 46
  • [6] SAMPLING THEMATIC MAPPER IMAGERY FOR LAND-USE DATA
    SMIATEK, G
    [J]. REMOTE SENSING OF ENVIRONMENT, 1995, 52 (02) : 116 - 121
  • [7] USING RANDOM FOREST TO INTEGRATE LIDAR DATA AND HYPERSPECTRAL IMAGERY FOR LAND COVER CLASSIFICATION
    Huang, Rui
    Zhu, Jiangtao
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3978 - 3981
  • [8] Techniques for developing land-use classification using moderate resolution imaging spectroradiometer imagery
    Stern, Alan J.
    Doraiswamy, Paul C.
    Akhmedov, Bakhyt
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2009, 3
  • [9] Creating a Land-use Classification for Iowa using MODIS 250-meter Imagery
    Stern, Alan J.
    Doraiswamy, Paul C.
    Akhmedov, Bakhyt
    [J]. 2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 1153 - 1156
  • [10] LiDAR Imagery Confirms Extensive Interior Land-Use on Tutuila, American Samoa
    Cochrane, Ethan E.
    Mills, Joseph
    [J]. JOURNAL OF PACIFIC ARCHAEOLOGY, 2018, 9 (01): : 70 - 78