Improvement of Cu(In,Ga)Se2 thin film solar cells by surface sulfurization using ditertiarybutylsulfide

被引:24
|
作者
Liu, Xiaohui [1 ]
Liu, Zhengxin [1 ]
Meng, Fanying [1 ]
Sugiyama, Mutsumi [2 ]
机构
[1] Chinese Acad Sci, Res Ctr New Energy Technol, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
[2] Tokyo Univ Sci, Fac Sci & Technol, Dept Elect Engn, Noda, Chiba 2788510, Japan
关键词
Cu(In; Ga)Se-2; (CIGS); Sulfurization; Liquid sulfur source; Ditertiarybutylsulfide; Thin film solar cells; DEFECT LEVELS; PHOTOLUMINESCENCE; SULFUR; DEPENDENCE; BAND;
D O I
10.1016/j.solmat.2014.02.008
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Surface sulfurization of Cu(In,Ga)Se-2 (CIGS) thin films was carried out using liquid ditertiarybutylsulfide [(t-C4H9)(2)S: DTBS] to improve the performances of CIGS-based solar cells. The initial CIGS thin films were prepared by using the conventional three-stage co-evaporation process. Characterization by scanning electron microscopy, energy dispersive X-ray spectroscopy line scan, X-ray diffraction, and photoluminescence showed that the electrical and optical properties of the absorber layers were improved after sulfurization. The performances of the solar cells incorporating the CIGS films were remarkably improved when films sulfurized with DTBS were used. The efficiency of the solar cells fabricated with CIGS films increased significantly from 12.4% to 13.6% with an open-circuit voltage of 642 mV, short-circuit current density of 30.95 mA/cm(2), and a fill factor of 68.2%. The improved cell performances can be attributed to the formation of a very thin sulfide layer on the CIGS layer and/or surface passivation by S atoms. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:227 / 231
页数:5
相关论文
共 50 条
  • [31] Electronic properties of Cu(In,Ga)Se2 thin-film solar cells -: An update
    Rau, U
    ADVANCES IN SOLID STATE PHYSICS 44, 2004, 44 : 27 - 38
  • [32] Engineering of Sodium Supply into Cu(In, Ga)Se2 Thin-Film Solar Cells
    Cho, Dae-Hyung
    Lee, Woo-Jung
    Wi, Jae-Hyung
    Yu, Hye-Jung
    Han, Won Seok
    Chung, Yong-Duck
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2018, 13 (12) : 1753 - 1757
  • [33] Effect of annealing on CdS/Cu(In,Ga)Se2 thin-film solar cells
    Chung, Yong-Duck
    Cho, Dae-Hyung
    Park, Nae-Man
    Lee, Kyu-Seok
    Kim, Jeha
    CURRENT APPLIED PHYSICS, 2011, 11 (01) : S65 - S67
  • [34] Cu(In,Ga)Se2 thin-film solar cells grown with cracked selenium
    Kawamura, Masahiro
    Fujita, Toshiyuki
    Yamada, Akira
    Konagai, Makoto
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (03) : 753 - 756
  • [35] The characteristics of Cu(In, Ga)Se2 thin-film solar cells by bandgap grading
    Kim, Young-Ill
    Yang, Kee-Jeong
    Kim, Se-Yun
    Kang, Jin-Kyu
    Kim, Juran
    Jo, William
    Yoo, Hyesun
    Kim, JunHo
    Kim, Dae-Hwan
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 76 : 437 - 442
  • [36] Effects of the incorporation of alkali elements on Cu(In,Ga)Se2 thin film solar cells
    Shin, Donghyeop
    Kim, Jekyung
    Gershon, Talia
    Mankad, Ravin
    Hopstaken, Marinus
    Guha, Supratik
    Ahn, Byung Tae
    Shin, Byungha
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 157 : 695 - 702
  • [37] Quantitative luminescence mapping of Cu(In, Ga)Se2 thin-film solar cells
    Delamarre, Amaury
    Paire, Myriam
    Guillemoles, Jean-Francois
    Lombez, Laurent
    PROGRESS IN PHOTOVOLTAICS, 2015, 23 (10): : 1305 - 1312
  • [38] Cu(In,Ga)Se2 thin film solar cells with buffer layer alternative to CdS
    Bhattacharya, RN
    Ramanathan, K
    SOLAR ENERGY, 2004, 77 (06) : 679 - 683
  • [39] Photosensitivity of thin-film ZnO/CdS/Cu(In, Ga)Se2 solar cells
    T. Walter
    V. Yu. Rud’
    Yu. V. Rud’
    H. W. Schock
    Semiconductors, 1997, 31 : 681 - 685
  • [40] Equivalent Circuit For AC Response of Cu(In,Ga)Se2 Thin Film Solar Cells
    Cunha, J. M. V.
    Rocha, C.
    Vinhais, C.
    Fernandes, P. A.
    Salome, P. M. P.
    2019 IEEE 46TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2019, : 923 - 927