Cu(In,Ga)Se2 thin-film solar cells grown with cracked selenium

被引:15
|
作者
Kawamura, Masahiro [1 ]
Fujita, Toshiyuki [1 ]
Yamada, Akira [1 ]
Konagai, Makoto [1 ]
机构
[1] Tokyo Inst Technol, Dept Phys Elect, Meguro Ku, Tokyo 1528552, Japan
关键词
Physical vapor deposition processes; Semiconducting quarternary alloys; Solar cells; HIGH-EFFICIENCY;
D O I
10.1016/j.jcrysgro.2008.09.091
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Cu(In1-xGax)Se-2 (CIGS) films have been grown by using cracked selenium. In conventional evaporation system, the Se atoms were supplied as large clusters (Se-x, x>5). However, the size of clusters can be reduced by the thermal cracking. The film qualities grown with small clusters (Se-x, x<4) would be improved, since the smaller size molecules easily react with elemental metals, resulting in the reduction of selenium vacancies and the enhancement of surface migration. The CIGS films were deposited by the three stage method with cracked selenium, and the films were evaluated by SEM, XRD, EDX, C-V measurement and admittance spectroscopy. It was found from the C-V characteristics that the carrier concentrations of the CIGS films grown with cracked selenium were increased with increasing the cracking temperature. The result clearly showed that the use of cracked selenium was effective for reduction of selenium vacancies. The conversion efficiency of 15.4% was obtained by using cracked selenium at a cracking temperature of 500 C. (C) 2008 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:753 / 756
页数:4
相关论文
共 50 条
  • [1] Modeling of Thin-Film Cu(In,Ga)Se2 Solar Cells
    Troni, F.
    Dodi, F.
    Sozzi, G.
    Menozzi, R.
    SISPAD 2010 - 15TH INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 2010, : 33 - 36
  • [2] Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells
    Romeo, A
    Terheggen, A
    Abou-Ras, D
    Bätzner, DL
    Haug, FJ
    Kälin, M
    Rudmann, D
    Tiwari, AN
    PROGRESS IN PHOTOVOLTAICS, 2004, 12 (2-3): : 93 - 111
  • [3] Ionization effects on Cu(In, Ga)Se2 thin-film solar cells
    Kawakita, Shirou
    Imaizumi, Mitsuru
    Ishizuka, Shogo
    Shibata, Hajime
    Okuda, Shuichi
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 14 NO 6, 2017, 14 (06):
  • [4] Progress in Polycrystalline Thin-Film Cu(In,Ga)Se2 Solar Cells
    Singh, Udai P.
    Patra, Surya P.
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2010, 2010
  • [5] Solar Cells Based on Cu(In, Ga)Se2 Thin-Film Layers
    Kobulov R.R.
    Matchanov N.A.
    Ataboev O.K.
    Akbarov F.A.
    Applied Solar Energy (English translation of Geliotekhnika), 2019, 55 (02): : 83 - 90
  • [6] Cu(In,Ga)Se2 thin-film solar cells with an efficiency of 18%
    Negami, T
    Hashimoto, Y
    Nishiwaki, S
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 67 (1-4) : 331 - 335
  • [7] Gallium gradients in Cu(In,Ga)Se2 thin-film solar cells
    Witte, Wolfram
    Abou-Ras, Daniel
    Albe, Karsten
    Bauer, Gottfried H.
    Bertram, Frank
    Boit, Christian
    Brueggemann, Rudolf
    Christen, Juergen
    Dietrich, Jens
    Eicke, Axel
    Hariskos, Dimitrios
    Maiberg, Matthias
    Mainz, Roland
    Meessen, Max
    Mueller, Mathias
    Neumann, Oliver
    Orgis, Thomas
    Paetel, Stefan
    Pohl, Johan
    Rodriguez-Alvarez, Humberto
    Scheer, Roland
    Schock, Hans-Werner
    Unold, Thomas
    Weber, Alfons
    Powalla, Michael
    PROGRESS IN PHOTOVOLTAICS, 2015, 23 (06): : 717 - 733
  • [8] Electroluminescence from Cu(In,Ga)Se2 thin-film solar cells
    Kirchartz, Thomas
    Mattheis, Julian
    Rau, Uwe
    THIN-FILM COMPOUND SEMICONDUCTOR PHOTOVOLTAICS - 2007, 2007, 1012 : 115 - +
  • [9] Fabrication of Cu(InGa)Se2 Thin-Film Solar Cells Grown with Ionized Ga Source
    Nakashiba, Tetusya
    Yamada, Akira
    Zhang, Li
    Konagai, Makoto
    COMMAD: 2008 CONFERENCE ON OPTOELECTRONIC AND MICROELECTRONIC MATERIALS & DEVICES, 2008, : 281 - 284
  • [10] Cu(In, Ga)Se2 thin film solar cells grown at low temperatures
    Zhang, W.
    Zhu, H.
    Zhang, L.
    Guo, Y.
    Niu, X.
    Li, Z.
    Chen, J.
    Liu, Q.
    Mai, Y.
    SOLID-STATE ELECTRONICS, 2017, 132 : 57 - 63