A Hybrid CNN-LSTM Model for SMS Spam Detection in Arabic and English Messages

被引:39
|
作者
Ghourabi, Abdallah [1 ,2 ]
Mahmood, Mahmood A. [1 ,3 ]
Alzubi, Qusay M. [1 ]
机构
[1] Jouf Univ, Dept Comp Sci, Tabarjal 74728, Saudi Arabia
[2] Univ Sousse, Higher Sch Sci & Technol Hammam Sousse, Hammam Sousse 4011, Tunisia
[3] Cairo Univ, Dept Informat & Technol Syst, Giza 12613, Egypt
来源
FUTURE INTERNET | 2020年 / 12卷 / 09期
关键词
SMS spam detection; deep learning; CNN; LSTM; SMS Classification; SMISHING MESSAGES; LANGUAGE MODELS; SECURITY MODEL; RECOGNITION; MACHINE;
D O I
10.3390/fi12090156
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Despite the rapid evolution of Internet protocol-based messaging services, SMS still remains an indisputable communication service in our lives until today. For example, several businesses consider that text messages are more effective than e-mails. This is because 82% of SMSs are read within 5 min., but consumers only open one in four e-mails they receive. The importance of SMS for mobile phone users has attracted the attention of spammers. In fact, the volume of SMS spam has increased considerably in recent years with the emergence of new security threats, such as SMiShing. In this paper, we propose a hybrid deep learning model for detecting SMS spam messages. This detection model is based on the combination of two deep learning methods CNN and LSTM. It is intended to deal with mixed text messages that are written in Arabic or English. For the comparative evaluation, we also tested other well-known machine learning algorithms. The experimental results that we present in this paper show that our CNN-LSTM model outperforms the other algorithms. It achieved a very good accuracy of 98.37%.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] A Hybrid CNN-LSTM Deep Learning Model for Classification of the Parkinson Disease
    El-Sayed, Rania Salah
    IAENG International Journal of Applied Mathematics, 2023, 53 (04)
  • [42] CNN-LSTM based Approach for DDoS Detection
    Alasmari, Tahani
    Eshmawi, Ala'
    Alshomrani, Adel
    Hsairi, Lobna
    2023 EIGHTH INTERNATIONAL CONFERENCE ON MOBILE AND SECURE SERVICES, MOBISECSERV, 2023,
  • [43] A Hybrid CNN-LSTM Architecture for Detection of Coronary Artery Disease from ECG
    Banerjee, Rohan
    Ghose, Avik
    Mandana, Kayapanda Muthana
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [44] Research on Parking Space Detection and Prediction Model Based on CNN-LSTM
    Xu, Zhuye
    Tang, Xiao
    Ma, Changxi
    Zhang, Renshuai
    IEEE ACCESS, 2024, 12 : 30085 - 30100
  • [45] Intrusion Detection Using Attention-Based CNN-LSTM Model
    Al-Omar, Ban
    Trabelsi, Zouheir
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2023, PT I, 2023, 675 : 515 - 526
  • [46] CNN-LSTM: Hybrid Deep Neural Network for Network Intrusion Detection System
    Halbouni, Asmaa
    Gunawan, Teddy Surya
    Habaebi, Mohamed Hadi
    Halbouni, Murad
    Kartiwi, Mira
    Ahmad, Robiah
    IEEE ACCESS, 2022, 10 : 99837 - 99849
  • [47] Hybrid Optimization Enabled Robust CNN-LSTM Technique for Network Intrusion Detection
    Deore, Bhushan
    Bhosale, Surendra
    IEEE ACCESS, 2022, 10 : 65611 - 65622
  • [48] Novel CNN and Hybrid CNN-LSTM Algorithms for UWB SNR Estimation
    Abbasi, Arash
    Liu, Huaping
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 637 - 641
  • [49] An Advanced CNN-LSTM Model for Cryptocurrency Forecasting
    Livieris, Ioannis E.
    Kiriakidou, Niki
    Stavroyiannis, Stavros
    Pintelas, Panagiotis
    ELECTRONICS, 2021, 10 (03) : 1 - 16
  • [50] A Hybrid CNN-LSTM Model for Forecasting Particulate Matter (PM2.5)
    Li, Taoying
    Hua, Miao
    Wu, Xu
    IEEE Access, 2020, 8 : 26933 - 26940