A Hybrid CNN-LSTM Model for SMS Spam Detection in Arabic and English Messages

被引:39
|
作者
Ghourabi, Abdallah [1 ,2 ]
Mahmood, Mahmood A. [1 ,3 ]
Alzubi, Qusay M. [1 ]
机构
[1] Jouf Univ, Dept Comp Sci, Tabarjal 74728, Saudi Arabia
[2] Univ Sousse, Higher Sch Sci & Technol Hammam Sousse, Hammam Sousse 4011, Tunisia
[3] Cairo Univ, Dept Informat & Technol Syst, Giza 12613, Egypt
来源
FUTURE INTERNET | 2020年 / 12卷 / 09期
关键词
SMS spam detection; deep learning; CNN; LSTM; SMS Classification; SMISHING MESSAGES; LANGUAGE MODELS; SECURITY MODEL; RECOGNITION; MACHINE;
D O I
10.3390/fi12090156
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Despite the rapid evolution of Internet protocol-based messaging services, SMS still remains an indisputable communication service in our lives until today. For example, several businesses consider that text messages are more effective than e-mails. This is because 82% of SMSs are read within 5 min., but consumers only open one in four e-mails they receive. The importance of SMS for mobile phone users has attracted the attention of spammers. In fact, the volume of SMS spam has increased considerably in recent years with the emergence of new security threats, such as SMiShing. In this paper, we propose a hybrid deep learning model for detecting SMS spam messages. This detection model is based on the combination of two deep learning methods CNN and LSTM. It is intended to deal with mixed text messages that are written in Arabic or English. For the comparative evaluation, we also tested other well-known machine learning algorithms. The experimental results that we present in this paper show that our CNN-LSTM model outperforms the other algorithms. It achieved a very good accuracy of 98.37%.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A Spam Transformer Model for SMS Spam Detection
    Liu, Xiaoxu
    Lu, Haoye
    Nayak, Amiya
    IEEE ACCESS, 2021, 9 : 80253 - 80263
  • [32] Machine intelligence based hybrid classifier for spam detection and sentiment analysis of SMS messages
    Ulligaddala Srinivasarao
    Aakanksha Sharaff
    Multimedia Tools and Applications, 2023, 82 : 31069 - 31099
  • [33] Arabic Sentiment Analysis Using Naive Bayes and CNN-LSTM
    Suleiman, Dima
    Odeh, Aseel
    Al-Sayyed, Rizik
    INFORMATICA-AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS, 2022, 46 (06): : 79 - 86
  • [34] Machine intelligence based hybrid classifier for spam detection and sentiment analysis of SMS messages
    Srinivasarao, Ulligaddala
    Sharaff, Aakanksha
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (20) : 31069 - 31099
  • [35] Classification of health care products using hybrid CNN-LSTM model
    Reddy, B. Ramakantha
    Kumar, R. Lokesh
    SOFT COMPUTING, 2023, 27 (13) : 9199 - 9216
  • [36] Monthly Runoff Prediction by Hybrid CNN-LSTM Model: A Case Study
    Ghose, Dillip Kumar
    Mahakur, Vinay
    Sahoo, Abinash
    ADVANCES IN COMPUTING AND DATA SCIENCES (ICACDS 2022), PT II, 2022, 1614 : 381 - 392
  • [37] A hybrid CNN-LSTM model for predicting server load in cloud computing
    Eva Patel
    Dharmender Singh Kushwaha
    The Journal of Supercomputing, 2022, 78 : 1 - 30
  • [38] A hybrid CNN-LSTM model for high resolution melting curve classification
    Ozkok, Fatma Ozge
    Celik, Mete
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [39] Hourly Photovoltaic Power Forecasting Using CNN-LSTM Hybrid Model
    Obiora, Chibuzor N.
    Ali, Ahmed
    2021 62ND INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND MANAGEMENT SCIENCE OF RIGA TECHNICAL UNIVERSITY (ITMS), 2021,
  • [40] A hybrid CNN-LSTM model for predicting server load in cloud computing
    Patel, Eva
    Kushwaha, Dharmender Singh
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (08): : 10595 - +