A Hybrid CNN-LSTM Model for SMS Spam Detection in Arabic and English Messages

被引:39
|
作者
Ghourabi, Abdallah [1 ,2 ]
Mahmood, Mahmood A. [1 ,3 ]
Alzubi, Qusay M. [1 ]
机构
[1] Jouf Univ, Dept Comp Sci, Tabarjal 74728, Saudi Arabia
[2] Univ Sousse, Higher Sch Sci & Technol Hammam Sousse, Hammam Sousse 4011, Tunisia
[3] Cairo Univ, Dept Informat & Technol Syst, Giza 12613, Egypt
来源
FUTURE INTERNET | 2020年 / 12卷 / 09期
关键词
SMS spam detection; deep learning; CNN; LSTM; SMS Classification; SMISHING MESSAGES; LANGUAGE MODELS; SECURITY MODEL; RECOGNITION; MACHINE;
D O I
10.3390/fi12090156
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Despite the rapid evolution of Internet protocol-based messaging services, SMS still remains an indisputable communication service in our lives until today. For example, several businesses consider that text messages are more effective than e-mails. This is because 82% of SMSs are read within 5 min., but consumers only open one in four e-mails they receive. The importance of SMS for mobile phone users has attracted the attention of spammers. In fact, the volume of SMS spam has increased considerably in recent years with the emergence of new security threats, such as SMiShing. In this paper, we propose a hybrid deep learning model for detecting SMS spam messages. This detection model is based on the combination of two deep learning methods CNN and LSTM. It is intended to deal with mixed text messages that are written in Arabic or English. For the comparative evaluation, we also tested other well-known machine learning algorithms. The experimental results that we present in this paper show that our CNN-LSTM model outperforms the other algorithms. It achieved a very good accuracy of 98.37%.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Spam Filtering of Mobile SMS Using CNN-LSTM Based Deep Learning Model
    Hossain, Syed Md Minhaz
    Sumon, Jayed Akbar
    Sen, Anik
    Alam, Md Iftaker
    Kamal, Khaleque Md Aashiq
    Alqahtani, Hamed
    Sarker, Iqbal H.
    HYBRID INTELLIGENT SYSTEMS, HIS 2021, 2022, 420 : 106 - 116
  • [2] A CNN Model for SMS Spam Detection
    Huang, Taihua
    2019 4TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2019), 2019, : 851 - 861
  • [3] SMS Spam Detection for Indian Messages
    Agarwal, Sakshi
    Kaur, Sanmeet
    Garhwal, Sunita
    2015 1ST INTERNATIONAL CONFERENCE ON NEXT GENERATION COMPUTING TECHNOLOGIES (NGCT), 2015, : 634 - 638
  • [4] Text classification based on hybrid CNN-LSTM hybrid model
    She, Xiangyang
    Zhang, Di
    2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2018, : 185 - 189
  • [5] A Hybrid CNN-LSTM Model for Psychopathic Class Detection from Tweeter Users
    Alotaibi, Fahad Mazaed
    Asghar, Muhammad Zubair
    Ahmad, Shakeel
    COGNITIVE COMPUTATION, 2021, 13 (03) : 709 - 723
  • [6] Epilepsy Detection from EEG Data Using a Hybrid CNN-LSTM Model
    Neloy, Md. Arif Istiak
    Biswas, Anik
    Nahar, Nazmun
    Hossain, Mohammad Shahadat
    Andersson, Karl
    BRAIN INFORMATICS (BI 2022), 2022, 13406 : 253 - 263
  • [7] A hybrid CNN-LSTM model for typhoon formation forecasting
    Chen, Rui
    Wang, Xiang
    Zhang, Weimin
    Zhu, Xiaoyu
    Li, Aiping
    Yang, Chao
    GEOINFORMATICA, 2019, 23 (03) : 375 - 396
  • [8] A Hybrid CNN-LSTM Model for Psychopathic Class Detection from Tweeter Users
    Fahad Mazaed Alotaibi
    Muhammad Zubair Asghar
    Shakeel Ahmad
    Cognitive Computation, 2021, 13 : 709 - 723
  • [9] A hybrid CNN-LSTM model for typhoon formation forecasting
    Rui Chen
    Xiang Wang
    Weimin Zhang
    Xiaoyu Zhu
    Aiping Li
    Chao Yang
    GeoInformatica, 2019, 23 : 375 - 396
  • [10] An efficient CNN-LSTM model for sentiment detection in #BlackLivesMatter
    Ankita
    Rani, Shalli
    Bashir, Ali Kashif
    Alhudhaif, Adi
    Koundal, Deepika
    Gunduz, Emine Selda
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 193