Kinetic Simulation of the Rayleigh-Taylor Instability

被引:1
|
作者
Poleshkin, S. O. [1 ]
Kudryavtsev, A. N. [1 ,2 ]
机构
[1] Khristianovich Inst Theoret & Appl Mech SB RAS, Inst Skaya Str 4-1, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Pirogova Str 2, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
D O I
10.1063/5.0028881
中图分类号
O59 [应用物理学];
学科分类号
摘要
With the rapid development of numerical methods and computer systems in recent years, it has become possible to model complex multidimensional flows on the basis of the Boltzmann equation. For the first time, numerical simulations of the development of Rayleigh-Taylor instability is performed based on the solution of both the Boltzmann equation and the model kinetic equation. This paper is aimed at the identification of kinetic effects and estimation of the degree of flow non-equilibrium. For this purpose, the distribution functions obtained from kinetic simulations are compared with the Navier-Stokes distribution function.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [21] MODEL OF RAYLEIGH-TAYLOR INSTABILITY
    AREF, H
    TRYGGVASON, G
    PHYSICAL REVIEW LETTERS, 1989, 62 (07) : 749 - 752
  • [22] On saturation of Rayleigh-Taylor instability
    Frenkel, AL
    Halpern, D
    IUTAM SYMPOSIUM ON NONLINEAR WAVES IN MULTI-PHASE FLOW, 2000, 57 : 69 - 79
  • [23] Rotating Rayleigh-Taylor instability
    Scase, M. M.
    Baldwin, K. A.
    Hill, R. J. A.
    PHYSICAL REVIEW FLUIDS, 2017, 2 (02):
  • [24] COMPRESSIBLE RAYLEIGH-TAYLOR INSTABILITY
    BAKER, L
    PHYSICS OF FLUIDS, 1983, 26 (04) : 950 - 952
  • [25] THE KINETIC RAYLEIGH-TAYLOR INSTABILITY THEORY IN THE IONOSPHERE NEAR THE EQUATOR
    GERSHMAN, BN
    SHEVCHENKO, AN
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1984, 27 (06): : 679 - 684
  • [26] Numerical simulation of the Rayleigh-Taylor instability using the MPS method
    Cheng HuiFang
    Jiang ShengYao
    Bo HanLiang
    Duan RiQiang
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2012, 55 (10) : 2953 - 2959
  • [27] Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability
    Gallis, M. A.
    Koehler, T. P.
    Torczynski, J. R.
    Plimpton, S. J.
    PHYSICAL REVIEW FLUIDS, 2016, 1 (04):
  • [28] Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability
    Wang Li-Feng
    Ye Wen-Hua
    Li Ying-Jun
    CHINESE PHYSICS LETTERS, 2010, 27 (02)
  • [29] NUMERICAL-SIMULATION OF TURBULENT MIXING BY RAYLEIGH-TAYLOR INSTABILITY
    YOUNGS, DL
    PHYSICA D, 1984, 12 (1-3): : 32 - 44
  • [30] Discrete Boltzmann simulation of Rayleigh-Taylor instability in compressible flows
    Li De-Mei
    Lai Hui-Lin
    Xu Ai-Guo
    Zhang Guang-Cai
    Lin Chuan-Dong
    Gan Yan-Biao
    ACTA PHYSICA SINICA, 2018, 67 (08)