Kinetic Simulation of the Rayleigh-Taylor Instability

被引:1
|
作者
Poleshkin, S. O. [1 ]
Kudryavtsev, A. N. [1 ,2 ]
机构
[1] Khristianovich Inst Theoret & Appl Mech SB RAS, Inst Skaya Str 4-1, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Pirogova Str 2, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
D O I
10.1063/5.0028881
中图分类号
O59 [应用物理学];
学科分类号
摘要
With the rapid development of numerical methods and computer systems in recent years, it has become possible to model complex multidimensional flows on the basis of the Boltzmann equation. For the first time, numerical simulations of the development of Rayleigh-Taylor instability is performed based on the solution of both the Boltzmann equation and the model kinetic equation. This paper is aimed at the identification of kinetic effects and estimation of the degree of flow non-equilibrium. For this purpose, the distribution functions obtained from kinetic simulations are compared with the Navier-Stokes distribution function.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] SPH simulation of Rayleigh-Taylor instability
    Tang, Wen-Hui
    Mao, Yi-Ming
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2004, 26 (01): : 21 - 23
  • [2] Kinetic interpretation of the classical Rayleigh-Taylor instability
    Rodman, John
    Cagas, Petr
    Hakim, Ammar
    Srinivasan, Bhuvana
    PHYSICAL REVIEW E, 2022, 105 (06)
  • [3] Kinetic Theory of the Magnetic Rayleigh-Taylor Instability
    Onishchenko, O. G.
    Pokhotelov, O. A.
    GEOMAGNETISM AND AERONOMY, 2013, 53 (05) : 626 - 628
  • [4] Secondary instabilities in the collisionless Rayleigh-Taylor instability: Full kinetic simulation
    Umeda, Takayuki
    Wada, Yasutaka
    PHYSICS OF PLASMAS, 2016, 23 (11)
  • [5] Kinetic theory of the magnetic Rayleigh-Taylor instability
    O. G. Onishchenko
    O. A. Pokhotelov
    Geomagnetism and Aeronomy, 2013, 53 : 626 - 628
  • [6] On the long time simulation of the Rayleigh-Taylor instability
    Lee, Hyun Geun
    Kim, Kyoungmin
    Kim, Junseok
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 85 (13) : 1633 - 1647
  • [7] RAYLEIGH-TAYLOR INSTABILITY
    PLESSET, MS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 1095 - 1095
  • [8] RAYLEIGH-TAYLOR INSTABILITY
    BABENKO, KI
    PETROVICH, VI
    DOKLADY AKADEMII NAUK SSSR, 1979, 245 (03): : 551 - 554
  • [9] The Rayleigh-Taylor instability
    Piriz, A. R.
    Cortazar, O. D.
    Lopez Cela, J. J.
    Tahir, N. A.
    AMERICAN JOURNAL OF PHYSICS, 2006, 74 (12) : 1095 - 1098
  • [10] NUMERICAL-SIMULATION OF ABLATIVE RAYLEIGH-TAYLOR INSTABILITY
    GARDNER, JH
    BODNER, SE
    DAHLBURG, JP
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (04): : 1070 - 1074