Absence of Global Periodic Solutions for a Schrodinger-Type Nonlinear Evolution Equation

被引:1
|
作者
Nasibov, Sh M. [1 ]
机构
[1] Baku State Univ, Inst Appl Math, AZ-1148 Baku, Azerbaijan
关键词
nonlinear evolution equation; Schrodinger equation; periodic solution; global solution; absence of periodic global solutions;
D O I
10.1134/S1064562420050373
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of the absence of global periodic solutions for a Schrodinger-type nonlinear evolution equation with a linear damping term is investigated. It is proved that when the damping coefficient is nonnegative, the problem does not have global periodic solutions for any initial data, while when it is negative, the same is valid for "sufficiently large values" of the initial data.
引用
收藏
页码:401 / 402
页数:2
相关论文
共 50 条
  • [21] On Nonlinear Schrodinger-Type Equations with Nonlinear Damping
    Antonelli, Paolo
    Carles, Remi
    Sparber, Christof
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (03) : 740 - 762
  • [22] Ground-state solutions of Schrodinger-type equation with magnetic field
    Li, Fuyi
    Zhang, Cui
    Liang, Zhanping
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (16) : 17511 - 17521
  • [24] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrodinger-type equation
    Zhang, Guofei
    He, Jingsong
    Cheng, Yi
    CHINESE PHYSICS B, 2022, 31 (11)
  • [25] Nonlinear singular Schrodinger-type equations
    Lange, H
    Poppenberg, M
    Teismann, H
    NONLINEAR THEORY OF GENERALIZED FUNCTIONS, 1999, 401 : 113 - 128
  • [26] Schrodinger-type evolution equations in Lp(Ω)
    Xiao, TJ
    Liang, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (01) : 55 - 69
  • [27] The coupled nonlinear Schrodinger-type equations
    Abdelrahman, Mahmoud A. E.
    Hassan, S. Z.
    Inc, Mustafa
    MODERN PHYSICS LETTERS B, 2020, 34 (06):
  • [28] Periodic solutions of nonlinear Schrodinger type equations
    Liu, GT
    Fan, TY
    CHINESE PHYSICS, 2004, 13 (06): : 805 - 810
  • [29] Classification of solutions of the forced periodic nonlinear Schrodinger equation
    Shlizerman, Eli
    Rom-Kedar, Vered
    NONLINEARITY, 2010, 23 (09) : 2183 - 2218
  • [30] On the construction of almost periodic solutions for a nonlinear Schrodinger equation
    Pöschel, J
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 : 1537 - 1549