Supersymmetric KdV equation: Darboux transformation and discrete systems

被引:23
|
作者
Xue, Ling-Ling [1 ]
Levi, D. [2 ,3 ]
Liu, Q. P. [1 ]
机构
[1] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
[2] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
[3] Sez INFN Roma Tre, I-00146 Rome, Italy
基金
中国国家自然科学基金;
关键词
DE-VRIES EQUATION; EXTENSION;
D O I
10.1088/1751-8113/46/50/502001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the supersymmetric KdV equation, a proper Darboux transformation is presented. This Darboux transformation leads to the Backlund transformation found earlier by Liu and Xie (2004 Phys. Lett. A 325 139-43). The Darboux transformation and the related Backlund transformation are used to construct integrable super differential-difference and difference-difference systems. The continuum limits of these discrete systems and of their Lax pairs are also considered.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] The fully supersymmetric AKNS problem: Darboux transformations and discrete systems
    Zhou, Xiaoyuan
    Xue, Lingling
    Liu, Qingping
    PHYSICA SCRIPTA, 2023, 98 (03)
  • [22] Discrete Hirota equation: discrete Darboux transformation and new discrete soliton solutions
    Guo, Rui
    Zhao, Xiao-Juan
    NONLINEAR DYNAMICS, 2016, 84 (04) : 1901 - 1907
  • [23] Discrete Hirota equation: discrete Darboux transformation and new discrete soliton solutions
    Rui Guo
    Xiao-Juan Zhao
    Nonlinear Dynamics, 2016, 84 : 1901 - 1907
  • [24] A Darboux transformation of the sl(2|1) super KdV hierarchy and a super lattice potential KdV equation
    Zhou, Ruguang
    PHYSICS LETTERS A, 2014, 378 (26-27) : 1816 - 1819
  • [25] N=2a=1 supersymmetric KdV equation and its Darboux–B?cklund transformations
    Xiao Xia Yang
    Lingling Xue
    Q P Liu
    Communications in Theoretical Physics, 2024, 76 (11) : 14 - 21
  • [26] Bosonization of supersymmetric KdV equation
    Gao, Xiao Nan
    Lou, S. Y.
    PHYSICS LETTERS B, 2012, 707 (01) : 209 - 215
  • [27] Infinitesimal Darboux transformation and semi-discrete MKDV equation
    Cho, Joseph
    Rossman, Wayne
    Seno, Tomoya
    NONLINEARITY, 2022, 35 (04) : 2134 - 2146
  • [28] N=2a=1 supersymmetric KdV equation and its Darboux-Bäcklund transformations
    Yang, XiaoXia
    Xue, Lingling
    Liu, Q. P.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2024, 76 (11)
  • [29] Darboux dressing and undressing for the ultradiscrete KdV equation
    Nimmo, Jonathan J. C.
    Gilson, Claire R.
    Willox, Ralph
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (44)
  • [30] Bilinear approach to supersymmetric KdV equation
    Carstea, AS
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2001, 8 (Suppl 1) : 48 - 52