Supersymmetric KdV equation: Darboux transformation and discrete systems
被引:23
|
作者:
Xue, Ling-Ling
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
Xue, Ling-Ling
[1
]
Levi, D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
Sez INFN Roma Tre, I-00146 Rome, ItalyChina Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
Levi, D.
[2
,3
]
Liu, Q. P.
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R ChinaChina Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
Liu, Q. P.
[1
]
机构:
[1] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
[2] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
For the supersymmetric KdV equation, a proper Darboux transformation is presented. This Darboux transformation leads to the Backlund transformation found earlier by Liu and Xie (2004 Phys. Lett. A 325 139-43). The Darboux transformation and the related Backlund transformation are used to construct integrable super differential-difference and difference-difference systems. The continuum limits of these discrete systems and of their Lax pairs are also considered.
机构:
Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China