Bilinear approach to supersymmetric KdV equation

被引:1
|
作者
Carstea, AS [1 ]
机构
[1] Natl Inst Phys & Nucl Engn, Dept Phys Theor, Bucharest, Romania
关键词
D O I
10.2991/jnmp.2001.8.s.9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Extending the gauge-invariance principle for tau functions of the standard bilinear formalism to the supersymmetric case, we define N = 1 supersymmetric Hirota operators, Using them, we bilinearize SUSY KdV equation, The solution for multiple collisions of super-solitons is given.
引用
收藏
页码:48 / 52
页数:5
相关论文
共 50 条
  • [1] Bilinear Approach to Supersymmetric KdV Equation
    A S Carstea
    Journal of Nonlinear Mathematical Physics, 2001, 8 : 48 - 52
  • [2] Bilinear approach to N=2 supersymmetric KdV equations
    ZHANG MengXia1
    Science China Mathematics, 2009, (09) : 1973 - 1981
  • [3] Bilinear approach to N=2 supersymmetric KdV equations
    ZHANG MengXia LIU QingPing SHEN YaLi WU Ke Department of Mathematics China University of Mining and Technology Beijing China School of Mathematical Sciences Capital Normal University Beijing China Department of Applied Mathematics Yuncheng University Yuncheng China
    ScienceinChina(SeriesA:Mathematics), 2009, 52 (09) : 1973 - 1981
  • [4] Bilinear approach to N = 2 supersymmetric KdV equations
    MengXia Zhang
    QingPing Liu
    YaLi Shen
    Ke Wu
    Science in China Series A: Mathematics, 2009, 52 : 1973 - 1981
  • [5] Bilinear approach to N=2 supersymmetric KdV equations
    Zhang MengXia
    Liu QingPing
    Shen YaLi
    Wu Ke
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (09): : 1973 - 1981
  • [6] Bilinear approach to the supersymmetric Gardner equation
    C. N. Babalic
    A. S. Carstea
    Theoretical and Mathematical Physics, 2016, 188 : 1172 - 1180
  • [7] Bilinear approach to the supersymmetric Gardner equation
    Babalic, C. N.
    Carstea, A. S.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 188 (02) : 1172 - 1180
  • [8] A N=2 extension of the Hirota bilinear formalism and the supersymmetric KdV equation
    Delisle, Laurent
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (01)
  • [9] Bilinear approach for a symmetry constraint of the modified KdV equation
    Zhang, Jian-bing
    Zhang, Da-jun
    Shen, Qing
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (08) : 4494 - 4500
  • [10] Constructing soliton solutions and super-bilinear form of lattice supersymmetric KdV equation
    Carstea, A. S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (28)