Observability Estimate for the Fractional Order Parabolic Equations on Measurable Sets
被引:3
|
作者:
Zheng, Guojie
论文数: 0引用数: 0
h-index: 0
机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
Univ Witwatersrand Wits, Sch Computat & Appl Math, ZA-2050 Johannesburg, South AfricaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
Zheng, Guojie
[1
,2
]
Ali, M. Montaz
论文数: 0引用数: 0
h-index: 0
机构:
Univ Witwatersrand Wits, Sch Computat & Appl Math, ZA-2050 Johannesburg, South Africa
Univ Witwatersrand Wits, TCSE, Fac Engn & Built Environm, ZA-2050 Johannesburg, South AfricaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
Ali, M. Montaz
[2
,3
]
机构:
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Univ Witwatersrand Wits, Sch Computat & Appl Math, ZA-2050 Johannesburg, South Africa
[3] Univ Witwatersrand Wits, TCSE, Fac Engn & Built Environm, ZA-2050 Johannesburg, South Africa
We establish an observability estimate for the fractional order parabolic equations evolved in a bounded domain Omega of R-n. The observation region is Fx omega, where omega and F are measurable subsets of Omega and (0,T), respectively, with positive measure. This inequality is equivalent to the null controllable property for a linear controlled fractional order parabolic equation. The building of this estimate is based on the Lebeau-Robbiano strategy and a delicate result in measure theory provided in Phung and Wang (2013).
机构:
Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 610054, Peoples R China
BCAM, Bilbao 48009, Basque Country, SpainUniv Elect Sci & Technol China, Sch Math Sci, Chengdu 610054, Peoples R China