Observability Estimate for the Fractional Order Parabolic Equations on Measurable Sets

被引:3
|
作者
Zheng, Guojie [1 ,2 ]
Ali, M. Montaz [2 ,3 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Univ Witwatersrand Wits, Sch Computat & Appl Math, ZA-2050 Johannesburg, South Africa
[3] Univ Witwatersrand Wits, TCSE, Fac Engn & Built Environm, ZA-2050 Johannesburg, South Africa
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
HEAT-EQUATION; CONTROLLABILITY; TIME;
D O I
10.1155/2014/361904
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish an observability estimate for the fractional order parabolic equations evolved in a bounded domain Omega of R-n. The observation region is Fx omega, where omega and F are measurable subsets of Omega and (0,T), respectively, with positive measure. This inequality is equivalent to the null controllable property for a linear controlled fractional order parabolic equation. The building of this estimate is based on the Lebeau-Robbiano strategy and a delicate result in measure theory provided in Phung and Wang (2013).
引用
收藏
页数:5
相关论文
共 50 条
  • [31] ON REMOVABLE SETS OF SOLUTIONS OF THE SECOND ORDER ELLIPTICO-PARABOLIC EQUATIONS OF THE SECOND ORDER
    Mamedova, Vafa A.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2008, 29 (37): : 107 - 116
  • [32] AN INTERNAL OBSERVABILITY ESTIMATE FOR STOCHASTIC HYPERBOLIC EQUATIONS
    Fu, Xiaoyu
    Liu, Xu
    Lu, Qi
    Zhang, Xu
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2016, 22 (04) : 1382 - 1411
  • [33] WEAK FUNDAMENTAL-SOLUTIONS OF 2ND ORDER PARABOLIC EQUATIONS WITH MEASURABLE COEFFICIENTS
    PORPER, FO
    EIDELMAN, SD
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1981, (01): : 22 - 26
  • [34] FRACTIONAL STOCHASTIC PARABOLIC EQUATIONS WITH FRACTIONAL NOISE
    Duan, Yubo
    Jiang, Yiming
    Wei, Yawei
    Zheng, Zimeng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [35] Zero sets of solutions of second order parabolic equations with two spatial variables
    Watanabe, K
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2005, 57 (01) : 127 - 136
  • [36] Riesz Potential Estimates for Parabolic Equations with Measurable Nonlinearities
    Byun, Sun-Sig
    Kim, Youchan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (21) : 6737 - 6779
  • [37] A CERTAIN PROPERTY OF SOLUTIONS OF PARABOLIC EQUATIONS WITH MEASURABLE COEFFICIENTS
    KRYLOV, NV
    SAFONOV, MV
    MATHEMATICS OF THE USSR-IZVESTIYA, 1981, 16 (01): : 151 - 164
  • [38] Observability for Fractional Diffusion Equations By Interior Control
    Ruying Xue
    Fractional Calculus and Applied Analysis, 2017, 20 : 537 - 552
  • [39] OBSERVABILITY FOR FRACTIONAL DIFFUSION EQUATIONS BY INTERIOR CONTROL
    Xue, Ruying
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (02) : 537 - 552
  • [40] Observation from measurable sets for parabolic analytic evolutions and applications
    Escauriaza, Luis
    Montaner, Santiago
    Zhang, Can
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (05): : 837 - 867