Carlitz's q-Bernoulli and q-Euler numbers and polynomials and a class of generalized q-Hurwitz zeta functions

被引:46
|
作者
Choi, Junesang [2 ]
Anderson, P. J. [1 ]
Srivastava, H. M. [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] Dongguk Univ, Dept Math, Gyeongju 780714, South Korea
基金
加拿大自然科学与工程研究理事会;
关键词
q-Extensions of the Riemann zeta function and the Hurwitz zeta function; q-Extensions of the Bernoulli and Euler polynomials and numbers; q-Stirling numbers of the second kind; Euler-Maclaurin summation formula; Q-ANALOGS; DIRICHLET SERIES;
D O I
10.1016/j.amc.2009.06.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we systematically recover the identities for the q-eta numbers eta(k) and the q-eta polynomials eta(k)(x), presented by Carlitz [L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948) 987-1000], which we de. ne here via generating series rather than via the difference equations of Carlitz. Following a method developed by Kaneko et al. [M. Kaneko, N. Kurokawa, M. Wakayama, A variation of Euler's approach to the Riemann zeta function, Kyushu J. Math. 57 (2003) 175-192] for a canonical q-extension of the Riemann zeta function, we investigate a similarly constructed q-extension of the Hurwitz zeta function. The details of this investigation disclose some interesting connections among q-eta polynomials, Carlitz's q-Bernoulli polynomials B-k(x), epsilon-polynomials, and the q-Bernoulli polynomials that emerge from the q-extension of the Hurwitz zeta function discussed here. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1185 / 1208
页数:24
相关论文
共 50 条
  • [31] A note on type 2 q-Bernoulli and type 2 q-Euler polynomials
    Dae San Kim
    Taekyun Kim
    Han Young Kim
    Jongkyum Kwon
    Journal of Inequalities and Applications, 2019
  • [32] A note on type 2 q-Bernoulli and type 2 q-Euler polynomials
    Kim, Dae San
    Kim, Taekyun
    Kim, Han Young
    Kwon, Jongkyum
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [33] ON A CLASS OF MULTIPLE q-BERNOULLI, MULTIPLE q-EULER AND MULTIPLE q-GENOCCHI POLYNOMIALS OF ORDER alpha
    Duran, Ugur
    Acikgoz, Mehmet
    Araci, Serkan
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2016, 15 (08):
  • [34] SOME IDENTITIES ON THE EXTENDED CARLITZ'S q-BERNOULLI NUMBERS AND POLYNOMIALS
    Rim, Seog-Hoon
    Kim, Tae-Kyun
    Lee, Byung-Je
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (03) : 536 - 543
  • [35] On q-Euler numbers, q-Salie numbers and q-Carlitz numbers
    Pan, Hao
    Sun, Zhi-Wei
    ACTA ARITHMETICA, 2006, 124 (01) : 41 - 57
  • [36] Q-BERNOULLI NUMBERS AND POLYNOMIALS
    CARLITZ, L
    DUKE MATHEMATICAL JOURNAL, 1948, 15 (04) : 987 - 1000
  • [37] Some new identities on the twisted carlitz's q-bernoulli numbers and q-bernstein polynomials
    Jang, Lee-Chae
    Kim, Taekyun
    Kim, Young-Hee
    Lee, Byungje
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [38] Q-BERNOULLI NUMBERS AND POLYNOMIALS
    CARLITZ, L
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (03) : 272 - 273
  • [39] Some new identities on the twisted carlitz's q-bernoulli numbers and q-bernstein polynomials
    Lee-Chae Jang
    Taekyun Kim
    Young-Hee Kim
    Byungje Lee
    Journal of Inequalities and Applications, 2011
  • [40] A New Approach to q-Bernoulli Numbers and q-Bernoulli Polynomials Related to q-Bernstein Polynomials
    Acikgoz, Mehmet
    Erdal, Dilek
    Araci, Serkan
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,