A note on type 2 q-Bernoulli and type 2 q-Euler polynomials

被引:0
|
作者
Dae San Kim
Taekyun Kim
Han Young Kim
Jongkyum Kwon
机构
[1] Sogang University,Department of Mathematics
[2] Kwangwoon University,Department of Mathematics
[3] Gyeongsang National University,Department of Mathematics Education and ERI
关键词
Type 2 ; -Bernoulli polynomials; Type 2 ; -Euler polynomials; -adic ; -integral; Power sums of consecutive positive odd ; -integers; 11B83; 11S80; 05A30; 11B65;
D O I
暂无
中图分类号
学科分类号
摘要
As is well known, power sums of consecutive nonnegative integers can be expressed in terms of Bernoulli polynomials. Also, it is well known that alternating power sums of consecutive nonnegative integers can be represented by Euler polynomials. In this paper, we show that power sums of consecutive positive odd q-integers can be expressed by means of type 2 q-Bernoulli polynomials. Also, we show that alternating power sums of consecutive positive odd q-integers can be represented by virtue of type 2 q-Euler polynomials. The type 2 q-Bernoulli polynomials and type 2 q-Euler polynomials are introduced respectively as the bosonic p-adic q-integrals on Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z}_{p}$\end{document} and the fermionic p-adic q-integrals on Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z}_{p}$\end{document}. Along the way, we will obtain Witt type formulas and explicit expressions for those two newly introduced polynomials.
引用
收藏
相关论文
共 50 条
  • [1] A note on type 2 q-Bernoulli and type 2 q-Euler polynomials
    Kim, Dae San
    Kim, Taekyun
    Kim, Han Young
    Kwon, Jongkyum
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [2] On a class of q-Bernoulli and q-Euler polynomials
    Mahmudov, Nazim I.
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [3] On a class of q-Bernoulli and q-Euler polynomials
    Nazim I Mahmudov
    Advances in Difference Equations, 2013
  • [4] Some results for the q-Bernoulli and q-Euler polynomials
    Luo, Qiu-Ming
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (01) : 7 - 18
  • [5] On a class of generalized q-Bernoulli and q-Euler polynomials
    Nazim I Mahmudov
    M Eini Keleshteri
    Advances in Difference Equations, 2013
  • [6] Note on Type 2 Degenerate q-Bernoulli Polynomials
    Kim, Dae San
    Dolgy, Dmitry, V
    Kwon, Jongkyum
    Kim, Taekyun
    SYMMETRY-BASEL, 2019, 11 (07):
  • [7] On a class of generalized q-Bernoulli and q-Euler polynomials
    Mahmudov, Nazim I.
    Keleshteri, M. Eini
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [8] A Note on Type 2 Degenerate q-Euler Polynomials
    Kim, Taekyun
    Kim, Dae San
    Kim, Han Young
    Pyo, Sung-Soo
    MATHEMATICS, 2019, 7 (08)
  • [9] Some Recurrence Formulas for the q-Bernoulli and q-Euler Polynomials
    Pacin, Rahime Dere
    FILOMAT, 2020, 34 (02) : 663 - 669
  • [10] On a Class of q-Bernoulli, q-Euler, and q-Genocchi Polynomials
    Mahmudov, N. I.
    Momenzadeh, M.
    ABSTRACT AND APPLIED ANALYSIS, 2014,