Type 2 ;
-Bernoulli polynomials;
Type 2 ;
-Euler polynomials;
-adic ;
-integral;
Power sums of consecutive positive odd ;
-integers;
11B83;
11S80;
05A30;
11B65;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
As is well known, power sums of consecutive nonnegative integers can be expressed in terms of Bernoulli polynomials. Also, it is well known that alternating power sums of consecutive nonnegative integers can be represented by Euler polynomials. In this paper, we show that power sums of consecutive positive odd q-integers can be expressed by means of type 2 q-Bernoulli polynomials. Also, we show that alternating power sums of consecutive positive odd q-integers can be represented by virtue of type 2 q-Euler polynomials. The type 2 q-Bernoulli polynomials and type 2 q-Euler polynomials are introduced respectively as the bosonic p-adic q-integrals on Zp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{Z}_{p}$\end{document} and the fermionic p-adic q-integrals on Zp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{Z}_{p}$\end{document}. Along the way, we will obtain Witt type formulas and explicit expressions for those two newly introduced polynomials.
机构:
E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
Jiaozuo Univ, Dept Math, Henan Jiaozuo 454003, Peoples R ChinaE China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
机构:
Sogang Univ, Dept Math, Seoul 121742, South KoreaSogang Univ, Dept Math, Seoul 121742, South Korea
Kim, Dae San
Dolgy, Dmitry, V
论文数: 0引用数: 0
h-index: 0
机构:
Kwangwoon Univ, Kwangwoon Inst Adv Studies, Seoul 139701, South KoreaSogang Univ, Dept Math, Seoul 121742, South Korea
Dolgy, Dmitry, V
Kwon, Jongkyum
论文数: 0引用数: 0
h-index: 0
机构:
Gyeongsang Natl Univ, Dept Math Educ, Jinju 52828, Gyeongsangnamdo, South Korea
Gyeongsang Natl Univ, ERI, Jinju 52828, Gyeongsangnamdo, South KoreaSogang Univ, Dept Math, Seoul 121742, South Korea
Kwon, Jongkyum
Kim, Taekyun
论文数: 0引用数: 0
h-index: 0
机构:
Kwangwoon Univ, Dept Math, Seoul 139701, South KoreaSogang Univ, Dept Math, Seoul 121742, South Korea