A note on type 2 q-Bernoulli and type 2 q-Euler polynomials

被引:0
|
作者
Dae San Kim
Taekyun Kim
Han Young Kim
Jongkyum Kwon
机构
[1] Sogang University,Department of Mathematics
[2] Kwangwoon University,Department of Mathematics
[3] Gyeongsang National University,Department of Mathematics Education and ERI
关键词
Type 2 ; -Bernoulli polynomials; Type 2 ; -Euler polynomials; -adic ; -integral; Power sums of consecutive positive odd ; -integers; 11B83; 11S80; 05A30; 11B65;
D O I
暂无
中图分类号
学科分类号
摘要
As is well known, power sums of consecutive nonnegative integers can be expressed in terms of Bernoulli polynomials. Also, it is well known that alternating power sums of consecutive nonnegative integers can be represented by Euler polynomials. In this paper, we show that power sums of consecutive positive odd q-integers can be expressed by means of type 2 q-Bernoulli polynomials. Also, we show that alternating power sums of consecutive positive odd q-integers can be represented by virtue of type 2 q-Euler polynomials. The type 2 q-Bernoulli polynomials and type 2 q-Euler polynomials are introduced respectively as the bosonic p-adic q-integrals on Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z}_{p}$\end{document} and the fermionic p-adic q-integrals on Zp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z}_{p}$\end{document}. Along the way, we will obtain Witt type formulas and explicit expressions for those two newly introduced polynomials.
引用
收藏
相关论文
共 50 条
  • [21] Some identities of higher order Barnes-type q-Bernoulli polynomials and higher order Barnes-type q-Euler polynomials
    Lee-Chae Jang
    Sang-Ki Choi
    Hyuck In Kwon
    Advances in Difference Equations, 2015
  • [22] Identities Involving q-Bernoulli and q-Euler Numbers
    Kim, D. S.
    Kim, T.
    Choi, J.
    Kim, Y. H.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [23] A note on the Barnes-type q-Euler polynomials
    Lee-Chae Jang
    Jeong Gon Lee
    Advances in Difference Equations, 2015
  • [24] A note on the Barnes-type q-Euler polynomials
    Jang, Lee-Chae
    Lee, Jeong Gon
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [25] NOTE ON q-DEDEKIND-TYPE SUMS RELATED TO q-EULER POLYNOMIALS
    Kim, Taekyun
    GLASGOW MATHEMATICAL JOURNAL, 2012, 54 (01) : 121 - 125
  • [26] A note on q-Bernoulli numbers and polynomials
    Kim, Taekyun
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2006, 13 (03) : 315 - 322
  • [27] ON A CLASS OF MULTIPLE q-BERNOULLI, MULTIPLE q-EULER AND MULTIPLE q-GENOCCHI POLYNOMIALS OF ORDER alpha
    Duran, Ugur
    Acikgoz, Mehmet
    Araci, Serkan
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2016, 15 (08):
  • [28] A note on q-Bernoulli numbers and polynomials
    Hegazi, A. S.
    Mansour, M.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2006, 13 (01) : 9 - 18
  • [29] A Note on q-Bernoulli Numbers and Polynomials
    A S Hegazi
    M Mansour
    Journal of Nonlinear Mathematical Physics, 2006, 13 : 9 - 18
  • [30] A note on q-Bernoulli numbers and polynomials
    Ryoo, Cheon Seoung
    APPLIED MATHEMATICS LETTERS, 2007, 20 (05) : 524 - 531