共 50 条
Reflection Negative Kernels and Fractional Brownian Motion
被引:0
|作者:
Jorgensen, Palle E. T.
[1
]
Neeb, Karl-Hermann
[2
]
Olafsson, Gestur
[3
]
机构:
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] FAU Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[3] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
来源:
关键词:
fractional brownian motion;
reflection positivity;
reflection negative kernels;
representations of SL2 (R);
PATHWISE PROJECTIVE INVARIANCE;
UNITARY REPRESENTATIONS;
REPRODUCING KERNELS;
GAUSSIAN-PROCESSES;
HILBERT-SPACE;
SYMMETRY;
D O I:
10.3390/sym10060191
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
In this article we study the connection of fractional Brownian motion, representation theory and reflection positivity in quantum physics. We introduce and study reflection positivity for affine isometric actions of a Lie group on a Hilbert space epsilon and show in particular that fractional Brownian motion for Hurst index 0 < H <= 1/2 is reflection positive and leads via reflection positivity to an infinite dimensional Hilbert space if 0 < H < 1/2. We also study projective invariance of fractional Brownian motion and relate this to the complementary series representations of GL(2) (R). We relate this to a measure preserving action on a Gaussian L-2-Hilbert space L-2 (epsilon).
引用
收藏
页数:39
相关论文