Reflection Negative Kernels and Fractional Brownian Motion

被引:0
|
作者
Jorgensen, Palle E. T. [1 ]
Neeb, Karl-Hermann [2 ]
Olafsson, Gestur [3 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] FAU Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[3] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
来源
SYMMETRY-BASEL | 2018年 / 10卷 / 06期
关键词
fractional brownian motion; reflection positivity; reflection negative kernels; representations of SL2 (R); PATHWISE PROJECTIVE INVARIANCE; UNITARY REPRESENTATIONS; REPRODUCING KERNELS; GAUSSIAN-PROCESSES; HILBERT-SPACE; SYMMETRY;
D O I
10.3390/sym10060191
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article we study the connection of fractional Brownian motion, representation theory and reflection positivity in quantum physics. We introduce and study reflection positivity for affine isometric actions of a Lie group on a Hilbert space epsilon and show in particular that fractional Brownian motion for Hurst index 0 < H <= 1/2 is reflection positive and leads via reflection positivity to an infinite dimensional Hilbert space if 0 < H < 1/2. We also study projective invariance of fractional Brownian motion and relate this to the complementary series representations of GL(2) (R). We relate this to a measure preserving action on a Gaussian L-2-Hilbert space L-2 (epsilon).
引用
收藏
页数:39
相关论文
共 50 条
  • [21] The multiparameter fractional Brownian motion
    Herbin, Erick
    Merzbach, Ely
    MATH EVERYWHERE: DETERMINISTIC AND STOCHASTIC MODELLING IN BIOMEDICINE, ECONOMICS AND INDUSTRY, 2007, : 93 - +
  • [22] Piecewise fractional Brownian motion
    Perrin, E
    Harba, R
    Iribarren, I
    Jennane, R
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (03) : 1211 - 1215
  • [23] On Fractional Brownian Motion and Wavelets
    S. Albeverio
    P. E. T. Jorgensen
    A. M. Paolucci
    Complex Analysis and Operator Theory, 2012, 6 : 33 - 63
  • [24] On Fractional Brownian Motion and Wavelets
    Albeverio, S.
    Jorgensen, P. E. T.
    Paolucci, A. M.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (01) : 33 - 63
  • [25] Mixed fractional Brownian motion
    Cheridito, P
    BERNOULLI, 2001, 7 (06) : 913 - 934
  • [26] Comparison of scattering from fractional Brownian motion and asymptotic fractional Brownian motion rough surfaces
    Zhang, YD
    Wu, ZS
    2003 6TH INTERNATIONAL SYMPOSIUM ON ANTENNAS, PROPAGATION AND EM THEORY, PROCEEDINGS, 2003, : 496 - 499
  • [27] A Note on the Fractional Integrated Fractional Brownian Motion
    Charles El-Nouty
    Acta Applicandae Mathematica, 2003, 78 : 103 - 114
  • [28] Fractional Brownian motion via fractional laplacian
    Bojdecki, T
    Gorostiza, LG
    STATISTICS & PROBABILITY LETTERS, 1999, 44 (01) : 107 - 108
  • [29] A note on the fractional integrated fractional Brownian motion
    El-Nouty, C
    ACTA APPLICANDAE MATHEMATICAE, 2003, 78 (1-3) : 103 - 114
  • [30] FRACTIONAL MARTINGALES AND CHARACTERIZATION OF THE FRACTIONAL BROWNIAN MOTION
    Hu, Yaozhong
    Nualart, David
    Song, Jian
    ANNALS OF PROBABILITY, 2009, 37 (06): : 2404 - 2430