Silicon Interfacial Passivation Layer Chemistry for High-k/InP Interfaces

被引:12
|
作者
Dong, Hong [1 ]
Cabrera, Wilfredo [1 ]
Qin, Xiaoye [1 ]
Brennan, Barry [1 ]
Zhernokletov, Dmitry [2 ]
Hinkle, Christopher L. [1 ]
Kim, Jiyoung [1 ]
Chabal, Yves J. [1 ]
Wallace, Robert M. [1 ,2 ]
机构
[1] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
[2] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA
关键词
silicon interfacial passivation layer; indium phosphide; high-k; diffusion; atomic layer deposition; CHEMICAL-VAPOR-DEPOSITION; AL2O3; THIN-FILMS; IN-SITU; THERMAL-STABILITY; INP(100) SURFACES; ENERGY; MECHANISMS; SILICATES; HAFNIUM; GROWTH;
D O I
10.1021/am500752u
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The interfacial chemistry of thin (1 nm) silicon (Si) interfacial passivation layers (IPLs) deposited on acid-etched and native oxide InP(100) samples prior to atomic layer deposition (ALD) is investigated. The phosphorus oxides are scavenged completely from the acid-etched samples but not completely from the native oxide samples. Aluminum silicate and hafnium silicate are possibly generated upon ALD and following annealing. The thermal stability of a high-k/Si/InP (acid-etched) stack are also studied by in situ annealing to 400 and 500 degrees C under ultrahigh vacuum, and the aluminum oxide/Si/InP stack is the most thermally stable. An indium out-diffusion to the sample surface is observed through the Si IPL and the high-k dielectric, which may form volatile species and evaporate from the sample surface.
引用
收藏
页码:7340 / 7345
页数:6
相关论文
共 50 条
  • [1] Is interfacial chemistry correlated to gap states for high-k/III-V interfaces?
    Wang, W.
    Hinkle, C. L.
    Vogel, E. M.
    Cho, K.
    Wallace, R. M.
    MICROELECTRONIC ENGINEERING, 2011, 88 (07) : 1061 - 1065
  • [2] Role of the ultrathin silicon oxide interfacial layer in high-k dielectrics properties
    Novkovski, Nenad
    SIX INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION, 2007, 899 : 83 - 86
  • [3] Interfaces and defects of high-K oxides on silicon
    Robertson, J
    SOLID-STATE ELECTRONICS, 2005, 49 (03) : 283 - 293
  • [4] Characterization of high-k gate dielectric/silicon interfaces
    Miyazaki, S
    APPLIED SURFACE SCIENCE, 2002, 190 (1-4) : 66 - 74
  • [5] Suppression of interfacial layer in high-K gate stack with crystalline high-K dielectric and AlN buffer layer structure
    Wang, Wei-Cheng
    Tsai, Meng-Chen
    Lin, Yi-Ping
    Tsai, Yi-Jen
    Lin, Hsin-Chih
    Chen, Miin-Jang
    MATERIALS CHEMISTRY AND PHYSICS, 2016, 184 : 291 - 297
  • [6] High-K gate stack breakdown statistics modeled by correlated interfacial layer and high-k breakdown path
    Ribes, G.
    Mora, P.
    Monsieur, F.
    Rafik, M.
    Guarin, F.
    Yang, G.
    Roy, D.
    Chang, W. L.
    Stathis, J.
    2010 INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, 2010, : 364 - 368
  • [7] The impact of atomic layer deposited SiO2 passivation for high-k Ta1-xZrxO on the InP substrate
    Mahata, Chandreswar
    Oh, Il-Kwon
    Yoon, Chang Mo
    Lee, Chang Wan
    Seo, Jungmok
    Algadi, Hassan
    Sheen, Mi-Hyang
    Kim, Young-Woon
    Kim, Hyungjun
    Lee, Taeyoon
    JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (39) : 10293 - 10301
  • [8] Reliability of high-k dielectrics and its dependence on gate electrode and interfacial high-k bi-layer structure
    Kim, YH
    Choi, R
    Jha, R
    Lee, JH
    Misra, V
    Lee, JC
    MICROELECTRONICS RELIABILITY, 2004, 44 (9-11) : 1513 - 1518
  • [9] Indium diffusion through high-k dielectrics in high-k/InP stacks
    Dong, H.
    Cabrera, W.
    Galatage, R. V.
    Santosh, K. C.
    Brennan, B.
    Qin, X.
    McDonnell, S.
    Zhernokletov, D.
    Hinkle, C. L.
    Cho, K.
    Chabal, Y. J.
    Wallace, R. M.
    APPLIED PHYSICS LETTERS, 2013, 103 (06)
  • [10] Role of interfacial layer on breakdown of TiN/High-K gate stacks
    Chowdhury, N. A.
    Misra, D.
    Bersuker, G.
    Young, C.
    Choi, R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (12) : G298 - G306