Automatic Detection and Classification of Road Lane Markings Using Onboard Vehicular Cameras

被引:43
|
作者
de Paula, Mauricio Braga [1 ,2 ]
Jung, Claudio Rosito [2 ]
机构
[1] Fed Univ Pelotas UFPEL, Dept Math & Stat, BR-96160000 Pelotas, RS, Brazil
[2] Univ Fed Rio Grande Sul UFRGS, Inst Informat, BR-91509900 Porto Alegre, RS, Brazil
关键词
Lane detection; lane marking classification; onboard vehicular cameras; driver assistance systems; pattern classification;
D O I
10.1109/TITS.2015.2438714
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents a new approach for road lane classification using an onboard camera. Initially, lane boundaries are detected using a linear-parabolic lane model, and an automatic on-the-fly camera calibration procedure is applied. Then, an adaptive smoothing scheme is applied to reduce noise while keeping close edges separated, and pairs of local maxima-minima of the gradient are used as cues to identify lane markings. Finally, a Bayesian classifier based on mixtures of Gaussians is applied to classify the lane markings present at each frame of a video sequence as dashed, solid, dashed solid, solid dashed, or double solid. Experimental results indicate an overall accuracy of over 96% using a variety of video sequences acquired with different devices and resolutions.
引用
收藏
页码:3160 / 3169
页数:10
相关论文
共 50 条
  • [41] Automatic Detection and Classification of Safety Barriers in Road Construction Sites using a Laser Scanner
    Wimmer, Andreas
    Weiss, Thorsten
    Floegel, Francesco
    Dietmayer, Klaus
    2009 IEEE INTELLIGENT VEHICLES SYMPOSIUM, VOLS 1 AND 2, 2009, : 578 - 583
  • [42] Enhancing Automatic Incident Detection Using Vehicular Communications
    Abuelela, Mahmoud
    Olariu, Stephan
    Cetin, Mecit
    Rawat, Danda
    2009 IEEE 70TH VEHICULAR TECHNOLOGY CONFERENCE FALL, VOLS 1-4, 2009, : 1577 - +
  • [43] Deep RetinaNet-Based Detection and Classification of Road Markings by Visible Light Camera Sensors
    Toan Minh Hoang
    Phong Ha Nguyen
    Noi Quang Truong
    Lee, Young Won
    Park, Kang Ryoung
    SENSORS, 2019, 19 (02)
  • [44] Road Detection Using Classification Algorithms
    Acar, Safak Altay
    Bayir, Safak
    JOURNAL OF COMPUTERS, 2015, 10 (03) : 147 - 154
  • [45] Detection & Classification of Arrow Markings on Roads using Signed Edge Signatures
    Suchitra, S.
    Satzoda, R. K.
    Srikanthan, T.
    2012 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2012, : 796 - 801
  • [46] Road Curvature Estimation Using a New Lane Detection Method
    Jin, Chengxiong
    Wang, Xiaohua
    Miao, Zhonghua
    Ma, Shiwei
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 3597 - 3601
  • [47] Road edge and lane boundary detection using laser and vision
    Wijesoma, WS
    Kodagoda, KRS
    Balasuriya, AP
    Teoh, EK
    IROS 2001: PROCEEDINGS OF THE 2001 IEEE/RJS INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4: EXPANDING THE SOCIETAL ROLE OF ROBOTICS IN THE NEXT MILLENNIUM, 2001, : 1440 - 1445
  • [48] Automatic Detection and Classification of Audio Events for Road Surveillance Applications
    Almaadeed, Noor
    Asim, Muhammad
    Al-Maadeed, Somaya
    Bouridane, Ahmed
    Beghdadi, Azeddine
    SENSORS, 2018, 18 (06)
  • [49] Lane Detection and Tracking Using Classification in Image Sequences
    Lim, Sungsoo
    Lee, Daeho
    Park, Youngtae
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2014, 8 (12): : 4489 - 4501
  • [50] Automatic Detection of Animals in Mowing Operations Using Thermal Cameras
    Steen, Kim Arild
    Villa-Henriksen, Andres
    Therkildsen, Ole Roland
    Green, Ole
    SENSORS, 2012, 12 (06) : 7587 - 7597