Automatic Detection and Classification of Road Lane Markings Using Onboard Vehicular Cameras

被引:43
|
作者
de Paula, Mauricio Braga [1 ,2 ]
Jung, Claudio Rosito [2 ]
机构
[1] Fed Univ Pelotas UFPEL, Dept Math & Stat, BR-96160000 Pelotas, RS, Brazil
[2] Univ Fed Rio Grande Sul UFRGS, Inst Informat, BR-91509900 Porto Alegre, RS, Brazil
关键词
Lane detection; lane marking classification; onboard vehicular cameras; driver assistance systems; pattern classification;
D O I
10.1109/TITS.2015.2438714
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents a new approach for road lane classification using an onboard camera. Initially, lane boundaries are detected using a linear-parabolic lane model, and an automatic on-the-fly camera calibration procedure is applied. Then, an adaptive smoothing scheme is applied to reduce noise while keeping close edges separated, and pairs of local maxima-minima of the gradient are used as cues to identify lane markings. Finally, a Bayesian classifier based on mixtures of Gaussians is applied to classify the lane markings present at each frame of a video sequence as dashed, solid, dashed solid, solid dashed, or double solid. Experimental results indicate an overall accuracy of over 96% using a variety of video sequences acquired with different devices and resolutions.
引用
收藏
页码:3160 / 3169
页数:10
相关论文
共 50 条
  • [31] Lane Marking Detection Based on Adaptive Threshold Segmentation and Road Classification
    Huang, Junjie
    Liang, Huawei
    Wang, Zhiling
    Song, Yan
    Deng, Yao
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS IEEE-ROBIO 2014, 2014, : 291 - 296
  • [32] Extraction and Classification of Road Markings Using Mobile Laser Scanning Point Clouds
    Cheng, Ming
    Zhang, Haocheng
    Wang, Cheng
    Li, Jonathan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (03) : 1182 - 1196
  • [33] Lane detection using lane boundary marker network with road geometry constraints
    Khan, Hussam Ullah
    Ali, Afsheen Rafaqat
    Hassan, Ali
    Ali, Ahmed
    Kazmi, Wajahat
    Zaheer, Aamer
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 1823 - 1832
  • [34] Road markings detection and tracking using Hough Transform and Kalman Filter
    Voisin, V
    Avila, M
    Emile, B
    Begot, S
    Bardet, JC
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, PROCEEDINGS, 2005, 3708 : 76 - 83
  • [35] Camera-Based Lane Detection-Can Yellow Road Markings Facilitate Automated Driving in Snow?
    Storsaeter, Ane Dalsnes
    Pitera, Kelly
    McCormack, Edward
    VEHICLES, 2021, 3 (04): : 661 - 690
  • [36] Automatic Detection of Suspicious Objects using Surveillance Cameras
    Daikoku, Masayuki
    Karungaru, Stephen
    Terada, Kenji
    2013 PROCEEDINGS OF SICE ANNUAL CONFERENCE (SICE), 2013, : 1162 - 1167
  • [37] A Method for Automatic Lane Detection using a Deep Network
    Fallah, A.A.
    Soleymani, A.
    Khosravi, H.
    International Journal of Engineering, Transactions B: Applications, 2022, 35 (04): : 802 - 809
  • [38] A Method for Automatic Lane Detection using a Deep Network
    Fallah, A.A.
    Soleymani, A.
    Khosravi, H.
    International Journal of Engineering, Transactions A: Basics, 2022, 35 (04): : 802 - 809
  • [39] A Method for Automatic Lane Detection using a Deep Network
    Fallah, A. A.
    Soleymani, A.
    Khosravi, H.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2022, 35 (04): : 802 - 809
  • [40] Automatic road crack detection and classification using multi-tasking faster RCNN
    Sekar, Aravindkumar
    Perumal, Varalakshmi
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (06) : 6615 - 6628