A mechanistic modeling and data assimilation framework for Mojave Desert ecohydrology

被引:10
|
作者
Ng, Gene-Hua Crystal [1 ,2 ]
Bedford, David R. [1 ]
Miller, David M. [1 ]
机构
[1] US Geol Survey, Menlo Pk, CA 94025 USA
[2] Univ Minnesota, Dept Earth Sci, Minneapolis, MN USA
关键词
ENSEMBLE KALMAN FILTER; REMOTE-SENSING DATA; TIME-DOMAIN REFLECTOMETRY; LARREA-TRIDENTATA; SOIL-WATER; TERRESTRIAL CARBON; ECOSYSTEM MODEL; PARAMETER-ESTIMATION; CHIHUAHUAN DESERT; SONORAN DESERT;
D O I
10.1002/2014WR015281
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study demonstrates and addresses challenges in coupled ecohydrological modeling in deserts, which arise due to unique plant adaptations, marginal growing conditions, slow net primary production rates, and highly variable rainfall. We consider model uncertainty from both structural and parameter errors and present a mechanistic model for the shrub Larrea tridentata (creosote bush) under conditions found in the Mojave National Preserve in southeastern California (USA). Desert-specific plant and soil features are incorporated into the CLM-CN model by Oleson et al. (2010). We then develop a data assimilation framework using the ensemble Kalman filter (EnKF) to estimate model parameters based on soil moisture and leaf-area index observations. A new implementation procedure, the "multisite loop EnKF,'' tackles parameter estimation difficulties found to affect desert ecohydrological applications. Specifically, the procedure iterates through data from various observation sites to alleviate adverse filter impacts from non-Gaussianity in small desert vegetation state values. It also readjusts inconsistent parameters and states through a model spin-up step that accounts for longer dynamical time scales due to infrequent rainfall in deserts. Observation error variance inflation may also be needed to help prevent divergence of estimates from true values. Synthetic test results highlight the importance of adequate observations for reducing model uncertainty, which can be achieved through data quality or quantity.
引用
收藏
页码:4662 / 4685
页数:24
相关论文
共 50 条
  • [41] Joint Collaboration on Coupled Data Assimilation and Modeling
    Sims, Jamese
    Lee, Tsengdar
    Koch, Dorothy
    Gross, Brian
    Stajner, Ivanka
    Considine, David
    Pawson, Steven
    Kleist, Daryl
    Gelaro, Ron
    Flampouris, Stylianos
    Jung, Youngsun
    Gasbarro, Marc
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2022, 103 (05) : E1421 - E1425
  • [42] Error covariance modeling in sequential data assimilation
    Sénégas, J
    Wackernagel, H
    Rosenthal, W
    Wolf, T
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2001, 15 (01) : 65 - 86
  • [43] Data assimilation for modeling cavitation bubble dynamics
    Javad Eshraghi
    Arezoo M. Ardekani
    Pavlos P. Vlachos
    Experiments in Fluids, 2021, 62
  • [44] Design of the control set in the framework of variational data assimilation
    Gejadze, I. Yu.
    Malaterre, P. -O.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 325 : 358 - 379
  • [45] OpenDA-NEMO framework for ocean data assimilation
    van Velzen, Nils
    Altaf, Muhammad Umer
    Verlaan, Martin
    OCEAN DYNAMICS, 2016, 66 (05) : 691 - 702
  • [46] A novel neural network training framework with data assimilation
    Chong Chen
    Yixuan Dou
    Jie Chen
    Yaru Xue
    The Journal of Supercomputing, 2022, 78 : 19020 - 19045
  • [47] Formulation of scale transformation in a stochastic data assimilation framework
    Liu, Feng
    Li, Xin
    NONLINEAR PROCESSES IN GEOPHYSICS, 2017, 24 (02) : 279 - 291
  • [48] OpenDA-NEMO framework for ocean data assimilation
    Nils van Velzen
    Muhammad Umer Altaf
    Martin Verlaan
    Ocean Dynamics, 2016, 66 : 691 - 702
  • [49] A novel neural network training framework with data assimilation
    Chen, Chong
    Dou, Yixuan
    Chen, Jie
    Xue, Yaru
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (17): : 19020 - 19045
  • [50] A mechanistic modeling and estimation framework for environmental pathogen surveillance
    Wascher, Matthew
    Klaus, Colin J.
    Alvarado, Chance
    Panescu, Jenny
    Quam, Mikkel
    Dannemiller, Karen C.
    Tien, Joseph H.
    MATHEMATICAL BIOSCIENCES, 2024, 377