A mechanistic modeling and data assimilation framework for Mojave Desert ecohydrology

被引:10
|
作者
Ng, Gene-Hua Crystal [1 ,2 ]
Bedford, David R. [1 ]
Miller, David M. [1 ]
机构
[1] US Geol Survey, Menlo Pk, CA 94025 USA
[2] Univ Minnesota, Dept Earth Sci, Minneapolis, MN USA
关键词
ENSEMBLE KALMAN FILTER; REMOTE-SENSING DATA; TIME-DOMAIN REFLECTOMETRY; LARREA-TRIDENTATA; SOIL-WATER; TERRESTRIAL CARBON; ECOSYSTEM MODEL; PARAMETER-ESTIMATION; CHIHUAHUAN DESERT; SONORAN DESERT;
D O I
10.1002/2014WR015281
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study demonstrates and addresses challenges in coupled ecohydrological modeling in deserts, which arise due to unique plant adaptations, marginal growing conditions, slow net primary production rates, and highly variable rainfall. We consider model uncertainty from both structural and parameter errors and present a mechanistic model for the shrub Larrea tridentata (creosote bush) under conditions found in the Mojave National Preserve in southeastern California (USA). Desert-specific plant and soil features are incorporated into the CLM-CN model by Oleson et al. (2010). We then develop a data assimilation framework using the ensemble Kalman filter (EnKF) to estimate model parameters based on soil moisture and leaf-area index observations. A new implementation procedure, the "multisite loop EnKF,'' tackles parameter estimation difficulties found to affect desert ecohydrological applications. Specifically, the procedure iterates through data from various observation sites to alleviate adverse filter impacts from non-Gaussianity in small desert vegetation state values. It also readjusts inconsistent parameters and states through a model spin-up step that accounts for longer dynamical time scales due to infrequent rainfall in deserts. Observation error variance inflation may also be needed to help prevent divergence of estimates from true values. Synthetic test results highlight the importance of adequate observations for reducing model uncertainty, which can be achieved through data quality or quantity.
引用
收藏
页码:4662 / 4685
页数:24
相关论文
共 50 条
  • [31] Effects of Microwave Desert Surface Emissivity on AMSU-A Data Assimilation
    Yan, Banghua
    Weng, Fuzhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (04): : 1263 - 1276
  • [32] Data modeling and assimilation studies with the MU radar
    Zhang, SR
    Fukao, S
    Oliver, WL
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 1999, 61 (07) : 563 - 583
  • [33] Data assimilation for modeling cavitation bubble dynamics
    Eshraghi, Javad
    Ardekani, Arezoo M.
    Vlachos, Pavlos P.
    EXPERIMENTS IN FLUIDS, 2021, 62 (05)
  • [34] Towards a data assimilation system for morphodynamic modeling: bathymetric data assimilation for wave property estimation
    Garcia, Ivan D.
    El Serafy, Ghada
    Heemink, Arnold
    Schuttelaars, Henk
    OCEAN DYNAMICS, 2013, 63 (05) : 489 - 505
  • [35] Towards a data assimilation system for morphodynamic modeling: bathymetric data assimilation for wave property estimation
    Ivan D. Garcia
    Ghada El Serafy
    Arnold Heemink
    Henk Schuttelaars
    Ocean Dynamics, 2013, 63 : 489 - 505
  • [36] Data assimilation within the Advanced Circulation (ADCIRC) modeling framework for the estimation of Manning's friction coefficient
    Mayo, Talea
    Butler, Troy
    Dawson, Clint
    Hoteit, Ibrahim
    OCEAN MODELLING, 2014, 76 : 43 - 58
  • [37] Variational data assimilation for tropospheric chemistry modeling
    Elbern, H
    Schmidt, H
    Ebel, A
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D13) : 15967 - 15985
  • [38] Dealing with Uncertainty in Water Distribution System Models: A Framework for Real-Time Modeling and Data Assimilation
    Hutton, Christopher J.
    Kapelan, Zoran
    Vamvakeridou-Lyroudia, Lydia
    Savic, Dragan A.
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2014, 140 (02) : 169 - 183
  • [39] Error covariance modeling in sequential data assimilation
    J. Sénégas
    H. Wackernagel
    W. Rosenthal
    T. Wolf
    Stochastic Environmental Research and Risk Assessment, 2001, 15 : 65 - 86
  • [40] Simplified aerosol modeling for variational data assimilation
    Huneeus, N.
    Boucher, O.
    Chevallier, F.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2009, 2 (02) : 213 - 229