A FLOER HOMOLOGY FOR EXACT CONTACT EMBEDDINGS

被引:83
|
作者
Cieliebak, Kai [1 ]
Frauenfelder, Urs Adrian [1 ]
机构
[1] Univ Munich, Dept Math, D-80333 Munich, Bavaria, Germany
关键词
contact manifolds; Floer homology; Rabinowitz action functional; MASLOV INDEX; MORSE-THEORY; HAMILTONIAN-SYSTEMS; SYMPLECTIC HOMOLOGY; PERIODIC-SOLUTIONS; PATH-INTEGRALS; CONJECTURE; MANIFOLDS; INTERSECTIONS; COMPLEX;
D O I
10.2140/pjm.2009.239.251
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we construct the Floer homology for an action functional which was introduced by Rabinowitz and prove a vanishing theorem. As an application, we show that there are no displaceable exact contact embeddings of the unit cotangent bundle of a sphere of dimension greater than three into a convex exact symplectic manifold with vanishing first Chern class. This generalizes Gromov's result that there are no exact Lagrangian embeddings of a sphere into C(n).
引用
收藏
页码:251 / 316
页数:66
相关论文
共 50 条
  • [21] GAUGED HAMILTONIAN FLOER HOMOLOGY I: DEFINITION OF THE FLOER HOMOLOGY GROUPS
    Xu, Guangbo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (04) : 2967 - 3015
  • [22] Partial open book decompositions and the contact class in sutured floer homology
    Etgue, Tolga
    Ozbagci, Burak
    TURKISH JOURNAL OF MATHEMATICS, 2009, 33 (03) : 295 - 312
  • [23] On the colored Jones polynomial, sutured Floer homology, and knot Floer homology
    Grigsby, J. Elisenda
    Wehrli, Stephan M.
    ADVANCES IN MATHEMATICS, 2010, 223 (06) : 2114 - 2165
  • [24] Rational SFT, Linearized Legendrian Contact Homology, and Lagrangian Floer Cohomology
    Ekholm, Tobias
    PERSPECTIVES IN ANALYSIS, GEOMETRY, AND TOPOLOGY: ON THE OCCASION OF THE 60TH BIRTHDAY OF OLEG VIRO, 2012, 296 : 109 - 145
  • [25] The Kunneth formula in Floer homology for manifolds with restricted contact type boundary
    Oancea, A
    MATHEMATISCHE ANNALEN, 2006, 334 (01) : 65 - 89
  • [26] Braid Floer homology
    van den Berg, J. B.
    Ghrist, R.
    Vandervorst, R. C.
    Wojcik, W.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (05) : 1663 - 1721
  • [27] Floer homology and invariants of homology cobordism
    Saveliev, N
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1998, 9 (07) : 885 - 919
  • [28] Homology concordance and knot Floer homology
    Dai, Irving
    Hom, Jennifer
    Stoffregen, Matthew
    Truong, Linh
    MATHEMATISCHE ANNALEN, 2024, 390 (04) : 6111 - 6186
  • [29] The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions I
    Colin, Vincent
    Ghiggini, Paolo
    Honda, Ko
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2024, 139 (01): : 13 - 187
  • [30] Applications of higher-dimensional Heegaard Floer homology to contact topology
    Colin, Vincent
    Honda, Ko
    Tian, Yin
    JOURNAL OF TOPOLOGY, 2024, 17 (03)