Braid Floer homology

被引:5
|
作者
van den Berg, J. B. [1 ]
Ghrist, R. [2 ,3 ]
Vandervorst, R. C. [1 ]
Wojcik, W. [1 ]
机构
[1] Vrije Univ Amsterdam, Dept Math, Amsterdam, Netherlands
[2] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Elect Syst Engn, Philadelphia, PA 19104 USA
关键词
Floer homology; Braid; Symplectomorphism; Hamiltonian dynamics; MORSE-THEORY; SYSTEMS; POINTS; INDEX;
D O I
10.1016/j.jde.2015.03.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Area-preserving diffeomorphisms of a 2-disc can be regarded as time-1 maps of (non-autonomous) Hamiltonian flows on R/Z x D-2. The periodic flow-lines define braid (conjugacy) classes, up to full twists. We examine the dynamics relative to such braid classes and define a new invariant for such classes, the BRAID FLOER HOMOLOGY. This refinement of Hoer homology, originally used for the Arnol'd Conjecture, yields a Morse-type forcing theory for periodic points of area-preserving diffeomorphisms of the 2-disc based on braiding. Contributions of this paper include (1) a monotonicity lemma for the behavior of the nonlinear Cauchy Riemann equations with respect to algebraic lengths of braids; (2) establishment of the topological invariance of the resulting braid Hoer homology; (3) a shift theorem describing the effect of twisting braids in terms of shifting the braid Hoer homology; (4) computation of examples; and (5) a forcing theorem for the dynamics of Hamiltonian disc maps based on braid Floer homology. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1663 / 1721
页数:59
相关论文
共 50 条
  • [1] Knot Floer homology, link Floer homology and link detection
    Binns, Fraser
    Martin, Gage
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (01):
  • [2] GAUGED HAMILTONIAN FLOER HOMOLOGY I: DEFINITION OF THE FLOER HOMOLOGY GROUPS
    Xu, Guangbo
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (04) : 2967 - 3015
  • [3] On the colored Jones polynomial, sutured Floer homology, and knot Floer homology
    Grigsby, J. Elisenda
    Wehrli, Stephan M.
    [J]. ADVANCES IN MATHEMATICS, 2010, 223 (06) : 2114 - 2165
  • [4] Homology concordance and knot Floer homology
    Dai, Irving
    Hom, Jennifer
    Stoffregen, Matthew
    Truong, Linh
    [J]. MATHEMATISCHE ANNALEN, 2024,
  • [5] Floer homology and invariants of homology cobordism
    Saveliev, N
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 1998, 9 (07) : 885 - 919
  • [6] FLOER HOMOLOGY FOR SYMPLECTOMORPHISM
    Her, Hai-Long
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (06) : 895 - 936
  • [7] RABINOWITZ FLOER HOMOLOGY AND SYMPLECTIC HOMOLOGY
    Cieliebak, Kai
    Frauenfelder, Urs
    Oancea, Alexandru
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2010, 43 (06): : 957 - 1015
  • [8] Floer homology of Brieskorn homology spheres
    Saveliev, N
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 1999, 53 (01) : 15 - 87
  • [9] Combinatorial Floer Homology
    de Silva, Vin
    Robbin, Joel W.
    Salamon, Dietmar A.
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 230 (1080) : 63 - 67
  • [10] HF = HM, I Heegaard Floer homology and Seiberg-Witten Floer homology
    Kutluhan, Cagatay
    Lee, Yi-Jen
    Taubes, Clifford Henry
    [J]. GEOMETRY & TOPOLOGY, 2020, 24 (06) : 2829 - 2854