A distance-based model for spatial prediction using radial basis functions

被引:0
|
作者
Melo, Carlos E. [1 ]
Melo, Oscar O. [2 ]
Mateu, Jorge [3 ]
机构
[1] Univ Dist Francisco Jose de Caldas, Fac Engn, Bogota, Colombia
[2] Univ Nacl Colombia, Dept Stat, Fac Sci, Crr 30 45-03, Bogota, Colombia
[3] Univ Jaume 1, Dept Math, Campus Riu Sec, Castellon De La Plana 12071, Castellon, Spain
关键词
Detrending; Distance-based methods; Radial basis functions; Random function models; Smoothing parameter; Spatial prediction; REGULARIZED SPLINE; INTERPOLATION; TENSION;
D O I
10.1007/s10182-017-0305-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the context of local interpolators, radial basis functions (RBFs) are known to reduce the computational time by using a subset of the data for prediction purposes. In this paper, we propose a new distance-based spatial RBFs method which allows modeling spatial continuous random variables. The trend is incorporated into a RBF according to a detrending procedure with mixed variables, among which we may have categorical variables. In order to evaluate the efficiency of the proposed method, a simulation study is carried out for a variety of practical scenarios for five distinct RBFs, incorporating principal coordinates. Finally, the proposed method is illustrated with an application of prediction of calcium concentration measured at a depth of 0-20 cm in Brazil, selecting the smoothing parameter by cross-validation.
引用
收藏
页码:263 / 288
页数:26
相关论文
共 50 条
  • [31] Modeling the spatial dependence of quality data using distance-based inputs and a data-driven model
    Agheli, Elahe
    Ashrafzadeh, Afshin
    Janatrostami, Somaye
    Groundwater for Sustainable Development, 2024, 24
  • [32] Modeling the spatial dependence of quality data using distance-based inputs and a data-driven model
    Agheli, Elahe
    Ashrafzadeh, Afshin
    Janatrostami, Somaye
    GROUNDWATER FOR SUSTAINABLE DEVELOPMENT, 2024, 24
  • [33] Face Recognition Using Posterior Distance Model Based Radial Basis Function Neural Networks
    Thakur, S.
    Sing, J. K.
    Basu, D. K.
    Nasipuri, M.
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2009, 5909 : 470 - +
  • [34] A distance-based prior model parameterization for constraining solutions of spatial inverse problems
    Suzuki, Satomi
    Caers, Jef
    MATHEMATICAL GEOSCIENCES, 2008, 40 (04) : 445 - 469
  • [35] A Distance-based Prior Model Parameterization for Constraining Solutions of Spatial Inverse Problems
    Satomi Suzuki
    Jef Caers
    Mathematical Geosciences, 2008, 40 : 445 - 469
  • [36] A distance-based model for convergent evolution
    Barbara Holland
    Katharina T. Huber
    Vincent Moulton
    Journal of Mathematical Biology, 2024, 88
  • [37] A distance-based model for convergent evolution
    Holland, Barbara
    Huber, Katharina T.
    Moulton, Vincent
    JOURNAL OF MATHEMATICAL BIOLOGY, 2024, 88 (02)
  • [38] A residual based error estimator using radial basis functions
    Kee, Bernard B. T.
    Liu, G. R.
    Zhang, G. Y.
    Lu, C.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2008, 44 (9-10) : 631 - 645
  • [39] A method for simulation based optimization using radial basis functions
    Jakobsson, Stefan
    Patriksson, Michael
    Rudholm, Johan
    Wojciechowski, Adam
    OPTIMIZATION AND ENGINEERING, 2010, 11 (04) : 501 - 532
  • [40] A method for simulation based optimization using radial basis functions
    Stefan Jakobsson
    Michael Patriksson
    Johan Rudholm
    Adam Wojciechowski
    Optimization and Engineering, 2010, 11 : 501 - 532