A distance-based model for spatial prediction using radial basis functions

被引:0
|
作者
Melo, Carlos E. [1 ]
Melo, Oscar O. [2 ]
Mateu, Jorge [3 ]
机构
[1] Univ Dist Francisco Jose de Caldas, Fac Engn, Bogota, Colombia
[2] Univ Nacl Colombia, Dept Stat, Fac Sci, Crr 30 45-03, Bogota, Colombia
[3] Univ Jaume 1, Dept Math, Campus Riu Sec, Castellon De La Plana 12071, Castellon, Spain
关键词
Detrending; Distance-based methods; Radial basis functions; Random function models; Smoothing parameter; Spatial prediction; REGULARIZED SPLINE; INTERPOLATION; TENSION;
D O I
10.1007/s10182-017-0305-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the context of local interpolators, radial basis functions (RBFs) are known to reduce the computational time by using a subset of the data for prediction purposes. In this paper, we propose a new distance-based spatial RBFs method which allows modeling spatial continuous random variables. The trend is incorporated into a RBF according to a detrending procedure with mixed variables, among which we may have categorical variables. In order to evaluate the efficiency of the proposed method, a simulation study is carried out for a variety of practical scenarios for five distinct RBFs, incorporating principal coordinates. Finally, the proposed method is illustrated with an application of prediction of calcium concentration measured at a depth of 0-20 cm in Brazil, selecting the smoothing parameter by cross-validation.
引用
收藏
页码:263 / 288
页数:26
相关论文
共 50 条
  • [11] Distance-Based Localization in Wireless Sensor Network Using Exponential Grey Prediction Model
    Wajgi, Dipak W.
    Tembhurne, Jitendra, V
    Wajgi, Rakhi D.
    INTERNATIONAL JOURNAL OF BUSINESS DATA COMMUNICATIONS AND NETWORKING, 2024, 19 (01)
  • [12] Distance-based functions for image comparison
    Di Gesù, V
    Starovoitov, V
    PATTERN RECOGNITION LETTERS, 1999, 20 (02) : 207 - 214
  • [13] Distance-based classification with Lipschitz functions
    von Luxburg, U
    Bousquet, O
    LEARNING THEORY AND KERNEL MACHINES, 2003, 2777 : 314 - 328
  • [14] Improving prediction of distance-based outliers
    Angiulli, F
    Basta, S
    Pizzuti, C
    DISCOVERY SCIENCE, PROCEEDINGS, 2004, 3245 : 89 - 100
  • [15] Distance-based detection and prediction of outliers
    Angiulli, F
    Basta, S
    Pizzuti, C
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2006, 18 (02) : 145 - 160
  • [16] Vehicle Identification Using Distance-based Appearance Model
    Shih, Huang-Chia
    Wang, Hao-You
    2015 12TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2015,
  • [17] A network model using distance-based cosine elements
    Oike, K
    Koakutsu, S
    Hirata, H
    ELECTRICAL ENGINEERING IN JAPAN, 1999, 129 (04) : 87 - 95
  • [18] Network model using distance-based cosine elements
    Oike, Koichi
    Koakutsu, Seiichi
    Hirata, Hironori
    Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi), 1999, 129 (04): : 87 - 95
  • [19] Identification and prediction of ionospheric dynamics using a Hammerstein-Wiener model with radial basis functions
    Palanthandalam-Madapusi, HJ
    Ridley, AJ
    Bernstein, DS
    ACC: PROCEEDINGS OF THE 2005 AMERICAN CONTROL CONFERENCE, VOLS 1-7, 2005, : 5052 - 5057
  • [20] Industrial spatial agglomeration using distance-based approach in Beijing, China
    Jiaming Li
    Wenzhong Zhang
    Jianhui Yu
    Hongxia Chen
    Chinese Geographical Science, 2015, 25 : 698 - 712