Improving the time resolution of the MRPC detector using deep-learning algorithms

被引:4
|
作者
Wang, F. [1 ]
Han, D. [1 ]
Wang, Y. [1 ]
机构
[1] Tsinghua Univ, Dept Engn Phys, Key Lab Particle & Radiat Imaging, Minist Educ, Beijing 100084, Peoples R China
来源
JOURNAL OF INSTRUMENTATION | 2020年 / 15卷 / 09期
基金
中国国家自然科学基金;
关键词
Data processing methods; Gaseous detectors; Performance of High Energy Physics Detectors;
D O I
10.1088/1748-0221/15/09/C09033
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The multi-gap resistive plate chambers (MRPCs) will be used as the Time-of-Flight (ToF) system in the Solenoidal Large Intensity Device (SoLID). The time resolution required by the experiment for the MRPC system is 20 ps in order to make a 3 sigma separation of the pi/K created in the collisions. To achieve this goal, the whole system including the MRPC detector, the front-end electronics and the readout system will be upgraded. Based on the new system, a time reconstruction algorithm using a combined LSTM (ComLSTM) neural network is proposed. The best time resolution achieved with this algorithm in a cosmic ray test is 16.8 ps, which largely improves the timing ability of the MRPC detector and well satisfies the requirement of the SoLID.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Effective deep-learning brain MRI super resolution using simulated training data
    Ayaz, Aymen
    Boonstoppel, Rien
    Lorenz, Cristian
    Weese, Juergen
    Pluim, Josien
    Breeuwer, Marcel
    Computers in Biology and Medicine, 2024, 183
  • [22] Performance Evaluations of Channel Estimation using Deep-learning based Super-resolution
    Maruyama, Daiki
    Kanai, Kenji
    Katto, Jiro
    2021 IEEE 18TH ANNUAL CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE (CCNC), 2021,
  • [23] Improving mental health predictive models using deep learning algorithms
    Ji, Xiaomei
    INTERNATIONAL JOURNAL OF MENTAL HEALTH NURSING, 2023, 32 : 39 - 39
  • [24] Improving deep-learning electrocardiogram classification with an effective coloring method
    Chen, Wei -Wen
    Tseng, Chien -Chao
    Huang, Ching -Chun
    Lu, Henry Horng-Shing
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 149
  • [25] Using Deep Learning Algorithms to Improve Energy Resolution in the Semileptonic Decays
    WANG Yang
    CAI Hao
    SUN Liang
    WuhanUniversityJournalofNaturalSciences, 2022, 27 (02) : 161 - 168
  • [26] Satellite Imagery Super Resolution Using Classical and Deep Learning Algorithms
    Kuchkorov, T. A.
    Djumanov, J. X.
    Ochilov, T. D.
    Sabitova, N. Q.
    INTELLIGENT HUMAN COMPUTER INTERACTION, IHCI 2023, PT II, 2024, 14532 : 70 - 80
  • [27] A Case Study for Improving Performances of Deep-Learning Processor with MRAM
    Ohara R.
    Fukunaga A.
    Taichi M.
    Kabuto M.
    Hamabe R.
    Ikegawa M.
    Izumi S.
    Kawaguchi H.
    IPSJ Transactions on System LSI Design Methodology, 2024, 17 : 7 - 15
  • [28] Prediction of Short-Time Cloud Motion Using a Deep-Learning Model
    Su, Xinyue
    Li, Tiejian
    An, Chenge
    Wang, Guangqian
    ATMOSPHERE, 2020, 11 (11)
  • [29] Using Deep-Learning Algorithms to Simultaneously Identify Right and Left Ventricular Dysfunction From the Electrocardiogram
    Vaid, Akhil
    Johnson, Kipp W.
    Badgeley, Marcus A.
    Somani, Sulaiman S.
    Bicak, Mesude
    Landi, Isotta
    Russak, Adam
    Zhao, Shan
    Levin, Matthew A.
    Freeman, Robert S.
    Charney, Alexander W.
    Kukar, Atul
    Kim, Bette
    Danilov, Tatyana
    Lerakis, Stamatios
    Argulian, Edgar
    Narula, Jagat
    Nadkarni, Girish N.
    Glicksberg, Benjamin S.
    JACC-CARDIOVASCULAR IMAGING, 2022, 15 (03) : 395 - 410
  • [30] Non-resonant background removal in broadband CARS microscopy using deep-learning algorithms
    Vernuccio, Federico
    Broggio, Elia
    Sorrentino, Salvatore
    Bresci, Arianna
    Junjuri, Rajendhar
    Ventura, Marco
    Vanna, Renzo
    Bocklitz, Thomas
    Bregonzio, Matteo
    Cerullo, Giulio
    Rigneault, Herve
    Polli, Dario
    SCIENTIFIC REPORTS, 2024, 14 (01):