A note on feebly continuous functions

被引:2
|
作者
Leader, Imre [1 ]
机构
[1] Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
关键词
Real analysis; Ramsey theory;
D O I
10.1016/j.topol.2009.04.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A function f from R-2 to R is said to be feebly continuous at a point (x, y) if there exist sequences x(n) SE arrow x and yn SE arrow y with lim(n ->infinity) lim(m ->infinity) f (x(n), y(m)) = f (x, y). Dales asked if every function has a point of feeble continuity. Our aim in this short note is to show that (assuming the Continuum Hypothesis) the answer is 'no'. Dales also asked what happens for functions taking only two values: we show that in this case the answer is 'yes'. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2629 / 2631
页数:3
相关论文
共 50 条
  • [21] Note on confidence limits for continuous distribution functions
    Wald, A
    Wolfowitz, J
    ANNALS OF MATHEMATICAL STATISTICS, 1941, 12 : 118 - 119
  • [22] A note on the representation of continuous functions by linear superpositions
    Ismailov, Vugar E.
    EXPOSITIONES MATHEMATICAE, 2012, 30 (01) : 96 - 101
  • [23] A note on away-almost continuous functions
    Szuca, P
    TOPOLOGY PROCEEDINGS, VOL 27, NO 1, 2003, 2003, : 299 - 305
  • [24] A note on W-I-continuous functions
    F. Kuyucu
    T. Noiri
    A. A. Özkurt
    Acta Mathematica Hungarica, 2008, 119 : 393 - 400
  • [25] Feebly compact paratopological groups and real-valued functions
    Manuel Sanchis
    Mikhail Tkachenko
    Monatshefte für Mathematik, 2012, 168 : 579 - 597
  • [26] A Note on the Extension of Continuous Convex Functions from Subspaces
    de Bernardi, Carlo Alberto
    JOURNAL OF CONVEX ANALYSIS, 2017, 24 (01) : 333 - 347
  • [27] A NOTE ON FUZZY WEAKLY COMPLETELY CONTINUOUS-FUNCTIONS
    ZAHRAN, AM
    FUZZY SETS AND SYSTEMS, 1995, 76 (03) : 375 - 378
  • [28] A Note on Convexity of Upper Semi-Continuous Functions
    X. M. Yang
    OPSEARCH, 2001, 38 (2) : 235 - 237
  • [29] A note on fractal dimensions of graphs of certain continuous functions
    Liu, Peizhi
    Yu, Binyan
    Liang, Yongshun
    CHAOS SOLITONS & FRACTALS, 2024, 188
  • [30] A note on fI-sets and fI -continuous functions
    A. Keskin
    Takashi Noiri
    Saziye Yuksel
    Acta Mathematica Hungarica, 2005, 107 : 287 - 293