A note on feebly continuous functions

被引:2
|
作者
Leader, Imre [1 ]
机构
[1] Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
关键词
Real analysis; Ramsey theory;
D O I
10.1016/j.topol.2009.04.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A function f from R-2 to R is said to be feebly continuous at a point (x, y) if there exist sequences x(n) SE arrow x and yn SE arrow y with lim(n ->infinity) lim(m ->infinity) f (x(n), y(m)) = f (x, y). Dales asked if every function has a point of feeble continuity. Our aim in this short note is to show that (assuming the Continuum Hypothesis) the answer is 'no'. Dales also asked what happens for functions taking only two values: we show that in this case the answer is 'yes'. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2629 / 2631
页数:3
相关论文
共 50 条
  • [11] A NOTE ON CONTINUOUS FUNCTIONS ON METRIC SPACES
    Sanders, Sam
    BULLETIN OF SYMBOLIC LOGIC, 2024, 30 (03) : 398 - 420
  • [12] A note on continuous sums of ridge functions
    Aliev, Rashid A.
    Asgarova, Aysel A.
    Ismailov, Vugar E.
    JOURNAL OF APPROXIMATION THEORY, 2019, 237 : 210 - 221
  • [13] NOTE ON SEMI-CONTINUOUS FUNCTIONS
    JENSEN, JA
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1967, 43 (3-4): : 158 - &
  • [14] Super-Continuous Maps, Feebly-Regular and Completely Feebly-Regular Spaces
    Kharbhih, John Paul Jala
    Dutta, Sanghita
    MATEMATIKA, 2015, 31 (01) : 1 - 5
  • [15] A note on the uniform approximation of continuous affine functions
    Kraus, Michal
    EXPOSITIONES MATHEMATICAE, 2009, 27 (01) : 73 - 78
  • [16] A NOTE ON APPROXIMATION OF CONTINUOUS FUNCTIONS ON NORMED SPACES
    Mytrofanov, M. A.
    Ravsky, A., V
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2020, 12 (01) : 107 - 110
  • [17] NOTE ON MEASURES DETERMINED BY CONTINUOUS-FUNCTIONS
    BRUCKNER, AM
    CANADIAN MATHEMATICAL BULLETIN, 1972, 15 (02): : 289 - &
  • [18] A note on W-I-continuous functions
    Kuyucu, F.
    Noiri, T.
    Oezkurt, A. A.
    ACTA MATHEMATICA HUNGARICA, 2008, 119 (04) : 393 - 400
  • [19] A NOTE ON THE DEGREE OF APPROXIMATION OF CONTINUOUS-FUNCTIONS
    CHANDRA, P
    ACTA MATHEMATICA HUNGARICA, 1993, 62 (1-2) : 21 - 23
  • [20] A note on strongly δθ-I-continuous functions
    Sanabria, Jose
    Lozada-Yavina, Rafael
    Tormet, Jose
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (02): : 443 - 453