Dynamics of heuristic optimization algorithms on random graphs

被引:15
|
作者
Weigt, M [1 ]
机构
[1] Univ Gottingen, Inst Theoret Phys, D-37073 Gottingen, Germany
来源
EUROPEAN PHYSICAL JOURNAL B | 2002年 / 28卷 / 03期
关键词
D O I
10.1140/epjb/e2002-00240-8
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this paper, the dynamics of heuristic algorithms for constructing small vertex covers (or independent sets) of finite-connectivity random graphs is analysed. In every algorithmic step, a vertex is chosen with respect to its vertex degree. This vertex, and some environment of it, is covered and removed from the graph. This graph reduction process can be described as a Markovian dynamics in the space of random graphs of arbitrary degree distribution. We discuss some solvable cases, including algorithms already analysed using different techniques, and develop approximation schemes for more complicated cases. The approximations are corroborated by numerical simulations.
引用
收藏
页码:369 / 381
页数:13
相关论文
共 50 条
  • [41] LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH, AND RANDOM REGULAR GRAPHS
    Hoppen, Carlos
    Wormald, Nicholas
    COMBINATORICA, 2018, 38 (03) : 619 - 664
  • [42] RANDOM GRAPHS AND GRAPH OPTIMIZATION PROBLEMS
    WEIDE, BW
    SIAM JOURNAL ON COMPUTING, 1980, 9 (03) : 552 - 557
  • [43] Constrained Markovian Dynamics of Random Graphs
    A. C. C. Coolen
    A. De Martino
    A. Annibale
    Journal of Statistical Physics, 2009, 136 : 1035 - 1067
  • [44] Dynamics of random graphs with bounded degrees
    Ben-Naim, E.
    Krapivsky, P. L.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [45] Majority dynamics on sparse random graphs
    Chakraborti, Debsoumya
    Kim, Jeong Han
    Lee, Joonkyung
    Tran, Tuan
    RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (01) : 171 - 191
  • [46] METASTABILITY FOR GLAUBER DYNAMICS ON RANDOM GRAPHS
    Dommers, S.
    Den Hollander, F.
    Jovanovski, O.
    Nardi, F. R.
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (04): : 2130 - 2158
  • [47] Dynamics of excitable nodes on random graphs
    Manchanda, K.
    Singh, T. Umeshkanta
    Ramaswamy, R.
    PRAMANA-JOURNAL OF PHYSICS, 2011, 77 (05): : 803 - 809
  • [48] NER automata dynamics on random graphs
    Hernandez, G.
    Salinas, L.
    RECENT PROGRESS IN COMPUTATIONAL SCIENCES AND ENGINEERING, VOLS 7A AND 7B, 2006, 7A-B : 203 - +
  • [49] Consensus dynamics on random rectangular graphs
    Estrada, Ernesto
    Sheerin, Matthew
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 323 : 20 - 26
  • [50] Best response dynamics on random graphs
    Chellig, Jordan
    Durbac, Calina
    Fountoulakis, Nikolaos
    GAMES AND ECONOMIC BEHAVIOR, 2022, 131 : 141 - 170