Quantum coding with systems with finite Hilbert space

被引:0
|
作者
Vourdas, A [1 ]
机构
[1] Univ Bradford, Dept Comp, Bradford BD7 1DP, W Yorkshire, England
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Angle states and operators are defined in a (2j + 1)-dimensional angular momentum Hilbert space H through Fourier transform. Displacement operators in the corresponding quantum phase space which in this case is a toroidal lattice, are generators of SU(2j + 1) transformations in H. In this context, a concatenated code is studied. In the first step the code is the space H-A spanned by the direct products of N angular momentum states with the same m. In the second step the code is the space H-B spanned by the direct products of M angle states of the space H-A, with the same m.
引用
收藏
页码:613 / 616
页数:4
相关论文
共 50 条
  • [41] Quantum coding with finite resources
    Marco Tomamichel
    Mario Berta
    Joseph M. Renes
    Nature Communications, 7
  • [42] Hilbert space for quantum mechanics on superspace
    Coulembier, K.
    De Bie, H.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (06)
  • [43] Quantum mechanics in an evolving Hilbert space
    Artacho, Emilio
    O'Regan, David D.
    PHYSICAL REVIEW B, 2017, 95 (11)
  • [44] Projection operator techniques and Hilbert space averaging in the quantum theory of nonequilibrium systems
    Gemmer, J.
    Breuer, H. -P.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 151 (1): : 1 - 12
  • [45] Projection operator techniques and Hilbert space averaging in the quantum theory of nonequilibrium systems
    J. Gemmer
    H.-P. Breuer
    The European Physical Journal Special Topics, 2007, 151 : 1 - 12
  • [46] Dense quantum coding and quantum finite automata
    Ambainis, A
    Nayak, A
    Ta-Shma, A
    Vazirani, U
    JOURNAL OF THE ACM, 2002, 49 (04) : 496 - 511
  • [47] The discrete Fourier transform and the quantum-mechanical oscillator in a finite-dimensional Hilbert space
    Santhanam, Thalanayar S.
    Santhanam, Balu
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (20)
  • [49] Hilbert space and ground-state structure of bilayer quantum Hall systems at ν=2/λ
    Calixto, M.
    Peon-Nieto, C.
    Perez-Romero, E.
    PHYSICAL REVIEW B, 2017, 95 (23)
  • [50] Geometry of the Hilbert space and the quantum Zeno effect
    Pati, AK
    Lawande, SV
    PHYSICAL REVIEW A, 1998, 58 (02): : 831 - 835