Quantum coding with systems with finite Hilbert space

被引:0
|
作者
Vourdas, A [1 ]
机构
[1] Univ Bradford, Dept Comp, Bradford BD7 1DP, W Yorkshire, England
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Angle states and operators are defined in a (2j + 1)-dimensional angular momentum Hilbert space H through Fourier transform. Displacement operators in the corresponding quantum phase space which in this case is a toroidal lattice, are generators of SU(2j + 1) transformations in H. In this context, a concatenated code is studied. In the first step the code is the space H-A spanned by the direct products of N angular momentum states with the same m. In the second step the code is the space H-B spanned by the direct products of M angle states of the space H-A, with the same m.
引用
收藏
页码:613 / 616
页数:4
相关论文
共 50 条
  • [31] Hilbert-Space Ergodicity in Driven Quantum Systems: Obstructions and Designs
    Pilatowsky-Cameo, Saúl
    Marvian, Iman
    Choi, Soonwon
    Ho, Wen Wei
    Physical Review X, 2024, 14 (04)
  • [32] On the control by electromagnetic fields of quantum systems with infinite dimensional Hilbert space
    Assemat, E.
    Chambrion, T.
    Sugny, D.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2015, 53 (01) : 374 - 385
  • [33] Radon transform in finite Hilbert space
    Revzen, M.
    EPL, 2012, 98 (01)
  • [34] Measures on the Hilbert space of a quantum system
    Khrennikov, A. Yu.
    Smolyanov, O. G.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2017, 24 (02) : 234 - 240
  • [35] Measures on the Hilbert space of a quantum system
    A. Yu. Khrennikov
    O. G. Smolyanov
    Russian Journal of Mathematical Physics, 2017, 24 : 234 - 240
  • [36] Unitarity and the Hilbert space of quantum gravity
    Hsu, Stephen D. H.
    Reeb, David
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (23)
  • [37] Hilbert space quantum mechanics is noncontextual
    Griffiths, Robert B.
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2013, 44 (03): : 174 - 181
  • [38] Quantum coding with finite resources
    Tomamichel, Marco
    Berta, Mario
    Renes, Joseph M.
    NATURE COMMUNICATIONS, 2016, 7
  • [39] Quantum relative positioning in Hilbert space
    Giovannetti, V
    Fazio, R
    PHYSICAL REVIEW A, 2005, 72 (04):
  • [40] Hilbert space methods and quantum mechanics
    Applebaum, Dave
    MATHEMATICAL GAZETTE, 2010, 94 (531): : 571 - 571