DREAM: Diabetic Retinopathy Analysis Using Machine Learning

被引:203
|
作者
Roychowdhury, Sohini [1 ]
Koozekanani, Dara D. [2 ]
Parhi, Keshab K. [1 ]
机构
[1] Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Ophthalmol & Visual Neurosci, Minneapolis, MN 55455 USA
关键词
Bright lesions; classification; diabetic retinopathy (DR); fundus image processing; red lesions; segmentation; severity grade; AUTOMATIC DETECTION; RETINAL IMAGES; SYSTEM; MICROANEURYSMS; CLASSIFICATION; DIAGNOSIS;
D O I
10.1109/JBHI.2013.2294635
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a computer-aided screening system (DREAM) that analyzes fundus images with varying illumination and fields of view, and generates a severity grade for diabetic retinopathy (DR) using machine learning. Classifiers such as the Gaussian Mixture model (GMM), k-nearest neighbor (kNN), support vector machine (SVM), and AdaBoost are analyzed for classifying retinopathy lesions from nonlesions. GMM and kNN classifiers are found to be the best classifiers for bright and red lesion classification, respectively. A main contribution of this paper is the reduction in the number of features used for lesion classification by feature ranking using Adaboost where 30 top features are selected out of 78. A novel two-step hierarchical classification approach is proposed where the nonlesions or false positives are rejected in the first step. In the second step, the bright lesions are classified as hard exudates and cotton wool spots, and the red lesions are classified as hemorrhages and micro-aneurysms. This lesion classification problem deals with unbalanced datasets and SVM or combination classifiers derived from SVM using the Dempster-Shafer theory are found to incur more classification error than the GMM and kNN classifiers due to the data imbalance. The DR severity grading system is tested on 1200 images from the publicly available MESSIDOR dataset. The DREAM system achieves 100% sensitivity, 53.16% specificity, and 0.904 AUC, compared to the best reported 96% sensitivity, 51% specificity, and 0.875 AUC, for classifying images as with or without DR. The feature reduction further reduces the average computation time for DR severity per image from 59.54 to 3.46 s.
引用
收藏
页码:1717 / 1728
页数:12
相关论文
共 50 条
  • [31] A Robust Machine Learning Model for Diabetic Retinopathy Classification
    Tabacaru, Gigi
    Moldovanu, Simona
    Raducan, Elena
    Barbu, Marian
    [J]. JOURNAL OF IMAGING, 2024, 10 (01)
  • [32] Diabetic retinopathy classification for supervised machine learning algorithms
    Luis Filipe Nakayama
    Lucas Zago Ribeiro
    Mariana Batista Gonçalves
    Daniel A. Ferraz
    Helen Nazareth Veloso dos Santos
    Fernando Korn Malerbi
    Paulo Henrique Morales
    Mauricio Maia
    Caio Vinicius Saito Regatieri
    Rubens Belfort Mattos
    [J]. International Journal of Retina and Vitreous, 8
  • [33] Diabetic retinopathy classification for supervised machine learning algorithms
    Nakayama, Luis Filipe
    Ribeiro, Lucas Zago
    Goncalves, Mariana Batista
    Ferraz, Daniel A.
    dos Santos, Helen Nazareth Veloso
    Malerbi, Fernando Korn
    Morales, Paulo Henrique
    Maia, Mauricio
    Regatieri, Caio Vinicius Saito
    Mattos, Rubens Belfort, Jr.
    [J]. INTERNATIONAL JOURNAL OF RETINA AND VITREOUS, 2022, 8 (01)
  • [34] Deep Machine Learning for OCTA Classification of Diabetic Retinopathy
    Le, David
    Alam, Minhaj Nur
    Lim, Jennifer I.
    Chan, Robison Vernon Paul
    Yao, Xincheng
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [35] Machine Learning Based Automated Segmentation and Hybrid Feature Analysis for Diabetic Retinopathy Classification Using Fundus Image
    Ali, Aqib
    Qadri, Salman
    Mashwani, Wali Khan
    Kumam, Wiyada
    Kumam, Poom
    Naeem, Samreen
    Goktas, Atila
    Jamal, Farrukh
    Chesneau, Christophe
    Anam, Sania
    Sulaiman, Muhammad
    [J]. ENTROPY, 2020, 22 (05)
  • [36] An Improved Approach for Detection of Diabetic Retinopathy Using Feature Importance and Machine Learning Algorithms
    Huda, S. M. Asiful
    Ila, Ishrat Jahan
    Sarder, Shahrier
    Shamsujjoha, Md
    Ali, Md Nawab Yousuf
    [J]. 2019 7TH INTERNATIONAL CONFERENCE ON SMART COMPUTING & COMMUNICATIONS (ICSCC), 2019, : 113 - 117
  • [37] Diabetic Retinopathy Detection from Fundus Images Using Machine Learning Techniques : A Review
    Anoop Balakrishnan Kadan
    Perumal Sankar Subbian
    [J]. Wireless Personal Communications, 2021, 121 : 2199 - 2212
  • [38] Diabetic Retinopathy Detection from Fundus Images Using Machine Learning Techniques : A Review
    Kadan, Anoop Balakrishnan
    Subbian, Perumal Sankar
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2021, 121 (03) : 2199 - 2212
  • [39] Performance and Limitation of Machine Learning Algorithms for Diabetic Retinopathy Screening: Meta-analysis
    Wu, Jo-Hsuan
    Liu, T. Y. Alvin
    Hsu, Wan-Ting
    Ho, Jennifer Hui-Chun
    Lee, Chien-Chang
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (07)
  • [40] Diabetic Retinopathy Detection from Fundus Images Using Machine Learning Techniques : A Review
    Kadan, Anoop Balakrishnan
    Subbian, Perumal Sankar
    [J]. Wireless Personal Communications, 2021, 121 (03): : 2199 - 2212