Diabetic retinopathy classification for supervised machine learning algorithms

被引:10
|
作者
Nakayama, Luis Filipe [1 ]
Ribeiro, Lucas Zago [1 ]
Goncalves, Mariana Batista [1 ,2 ,3 ,4 ]
Ferraz, Daniel A. [1 ,2 ,3 ,4 ]
dos Santos, Helen Nazareth Veloso [1 ]
Malerbi, Fernando Korn [1 ]
Morales, Paulo Henrique [1 ,2 ]
Maia, Mauricio [1 ]
Regatieri, Caio Vinicius Saito [1 ]
Mattos, Rubens Belfort, Jr. [1 ,2 ]
机构
[1] Univ Fed Sao Paulo EPM, Dept Ophthalmol, Botucatu St 821, BR-04023062 Sao Paulo, SP, Brazil
[2] IPEPO, Inst Paulista Estudos & Pesquisas Oftalmol, Vis Inst, Sao Paulo, SP, Brazil
[3] Moorfield Eye Hosp, NHS Fdn Trust, NIHR Biomed Res Ctr Ophthalmol, London, England
[4] UCL Inst Ophthalmol, London, England
关键词
Diabetic retinopathy classifications; Artificial intelligence; Datasets; SEVERITY;
D O I
10.1186/s40942-021-00352-2
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Background: Artificial intelligence and automated technology were first reported more than 70 years ago and nowadays provide unprecedented diagnostic accuracy, screening capacity, risk stratification, and workflow optimization. Diabetic retinopathy is an important cause of preventable blindness worldwide, and artificial intelligence technology provides precocious diagnosis, monitoring, and guide treatment. High-quality exams are fundamental in supervised artificial intelligence algorithms, but the lack of ground truth standards in retinal exams datasets is a problem. Main body: In this article, ETDRS, NHS, ICDR, SDGS diabetic retinopathy grading, and manual annotation are described and compared in publicly available datasets. The various DR labeling systems generate a fundamental problem for AI datasets. Possible solutions are standardization of DR classification and direct retinal-finding identifications. Conclusion: Reliable labeling methods also need to be considered in datasets with more trustworthy labeling.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Diabetic retinopathy classification for supervised machine learning algorithms
    Luis Filipe Nakayama
    Lucas Zago Ribeiro
    Mariana Batista Gonçalves
    Daniel A. Ferraz
    Helen Nazareth Veloso dos Santos
    Fernando Korn Malerbi
    Paulo Henrique Morales
    Mauricio Maia
    Caio Vinicius Saito Regatieri
    Rubens Belfort Mattos
    [J]. International Journal of Retina and Vitreous, 8
  • [2] Application of Machine Learning Algorithms on Diabetic Retinopathy
    Pal, Ridam
    Poray, Jayanta
    Sen, Mainak
    [J]. 2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 2046 - 2051
  • [3] Adaptive machine learning classification for diabetic retinopathy
    Laxmi Math
    Ruksar Fatima
    [J]. Multimedia Tools and Applications, 2021, 80 : 5173 - 5186
  • [4] Adaptive machine learning classification for diabetic retinopathy
    Math, Laxmi
    Fatima, Ruksar
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (04) : 5173 - 5186
  • [5] Protostellar classification using supervised machine learning algorithms
    Miettinen, O.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2018, 363 (09)
  • [6] Supervised machine learning algorithms for protein structure classification
    Jain, Pooja
    Garibaldi, Jonathan M.
    Hirst, Jonathan D.
    [J]. COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2009, 33 (03) : 216 - 223
  • [7] Protostellar classification using supervised machine learning algorithms
    O. Miettinen
    [J]. Astrophysics and Space Science, 2018, 363
  • [8] A Robust Machine Learning Model for Diabetic Retinopathy Classification
    Tabacaru, Gigi
    Moldovanu, Simona
    Raducan, Elena
    Barbu, Marian
    [J]. JOURNAL OF IMAGING, 2024, 10 (01)
  • [9] Deep Machine Learning for OCTA Classification of Diabetic Retinopathy
    Le, David
    Alam, Minhaj Nur
    Lim, Jennifer I.
    Chan, Robison Vernon Paul
    Yao, Xincheng
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [10] Performance Analysis of Supervised Machine Learning Algorithms for Text Classification
    Mishu, Sadia Zaman
    Rafiuddin, S. M.
    [J]. PROCEEDINGS OF THE 2016 19TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), 2016, : 409 - 413