An integration scheme for reaction-diffusion models

被引:3
|
作者
Nitti, M
机构
[1] Univ Florence, Dipartimento Sistemi & Informat, I-50139 Florence, Italy
[2] Udr Firenze, INFM, I-50125 Florence, Italy
[3] Univ Florence, Dipartimento Energet, I-50139 Florence, Italy
来源
关键词
partial differential equations; reaction-diffusion models; integration schemes;
D O I
10.1142/S0129183199000838
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A detailed description and validation of a recently developed integration scheme is here reported for one- and two-dimensional reaction-diffusion models. As paradigmatic examples of this class of partial differential equations the complex Ginzburg-Landau and the Fitzhugh-Nagumo equations have been analyzed. The novel algorithm has precision and stability comparable to those of pseudo-spectral codes, but is more convenient to be employed for systems with large linear extention L. As for finite-difference methods, the implementation of the present scheme requires only information about the local enviroment and this allows us to treat systems with very complicated boundary conditions.
引用
收藏
页码:1039 / 1050
页数:12
相关论文
共 50 条
  • [21] ON IMPULSIVE REACTION-DIFFUSION MODELS IN HIGHER DIMENSIONS
    Fazly, Mostafa
    Lewis, Mark
    Wang, Hao
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2017, 77 (01) : 224 - 246
  • [22] Analytically solvable models of reaction-diffusion systems
    Zemskov, EP
    Kassner, K
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2004, 25 (03) : 361 - 367
  • [23] Mathematical properties of models of the reaction-diffusion type
    Beccaria, M
    Soliani, G
    [J]. PHYSICA A, 1998, 260 (3-4): : 301 - 337
  • [24] Validation and calibration of models for reaction-diffusion systems
    Dilao, R
    Sainhas, J
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (06): : 1163 - 1182
  • [25] Anomalous Impact in Reaction-Diffusion Financial Models
    Mastromatteo, I.
    Toth, B.
    Bouchaud, J-P.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (26)
  • [26] Phase transition of triplet reaction-diffusion models
    Odor, G
    [J]. PHYSICAL REVIEW E, 2006, 73 (04):
  • [27] Invariants of reaction-diffusion cellular automata models
    Bandman, O. L.
    [J]. PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2012, 17 (03): : 108 - 120
  • [28] Learning Reaction-Diffusion Models for Image Inpainting
    Yu, Wei
    Heber, Stefan
    Pock, Thomas
    [J]. PATTERN RECOGNITION, GCPR 2015, 2015, 9358 : 356 - 367
  • [29] Propagation and reaction-diffusion models with free boundaries
    Du, Yihong
    [J]. BULLETIN OF MATHEMATICAL SCIENCES, 2022, 12 (01)
  • [30] Mathematical properties of models of the reaction-diffusion type
    Beccaria, M.
    Soliani, G.
    [J]. Physica A: Statistical Mechanics and its Applications, 1998, 260 (3-4): : 301 - 337