Anomalous Impact in Reaction-Diffusion Financial Models

被引:25
|
作者
Mastromatteo, I. [1 ]
Toth, B. [2 ]
Bouchaud, J-P. [2 ]
机构
[1] Ecole Polytech, Ctr Math Appl, CNRS, UMR7641, F-91128 Palaiseau, France
[2] Capital Fund Management, F-75007 Paris, France
关键词
2-SPECIES ANNIHILATION; REACTION FRONT; ONE-DIMENSION; STEADY-STATE; FLUCTUATIONS; MARKET;
D O I
10.1103/PhysRevLett.113.268701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the reaction-diffusion model A + B -> empty set in order to study the impact of an excess of A (or B) at the reaction front. We provide an exact solution of the model, which shows that the linear response breaks down: the average displacement of the reaction front grows as the square root of the imbalance. We argue that this model provides a highly simplified but generic framework to understand the square-root impact of large orders in financial markets.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Anomalous kinetics of reaction-diffusion fronts
    Taitelbaum, H
    Koza, Z
    [J]. PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 77 (05): : 1389 - 1400
  • [2] ANOMALOUS DYNAMICS IN REACTION-DIFFUSION SYSTEMS
    HAVLIN, S
    ARAUJO, M
    LARRALDE, H
    SHEHTER, A
    STANLEY, HE
    TRUNFIO, P
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1994, 16 (08): : 1039 - 1051
  • [3] Front propagation in reaction-diffusion systems with anomalous diffusion
    del-Castillo-Negrete, D.
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2014, 20 (01): : 87 - 105
  • [4] Front propagation in reaction-diffusion systems with anomalous diffusion
    D. del-Castillo-Negrete
    [J]. Boletín de la Sociedad Matemática Mexicana, 2014, 20 (1) : 87 - 105
  • [5] Analysis of Reaction-Diffusion Systems with Anomalous Subdiffusion
    Haugh, Jason M.
    [J]. BIOPHYSICAL JOURNAL, 2009, 97 (02) : 435 - 442
  • [6] Anomalous reaction-diffusion equations for linear reactions
    Lawley, Sean D.
    [J]. PHYSICAL REVIEW E, 2020, 102 (03)
  • [7] Effective diffusion coefficients in reaction-diffusion systems with anomalous transport
    Baron, Joseph W.
    Galla, Tobias
    [J]. PHYSICAL REVIEW E, 2019, 99 (01)
  • [8] Shear banding in reaction-diffusion models
    Ovidiu Radulescu
    Peter D. Olmsted
    C.-Y. David Lu
    [J]. Rheologica Acta, 1999, 38 : 606 - 613
  • [9] REACTION-DIFFUSION MODELS: DYNAMICS AND CONTROL
    Zuazua, Enrique
    [J]. PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL I, 2018, : 22 - 24
  • [10] Nonlinear Stability for Reaction-Diffusion Models
    Mulone, G.
    [J]. NEW TRENDS IN FLUID AND SOLID MODELS, 2010, : 91 - 101