Anomalous Impact in Reaction-Diffusion Financial Models

被引:25
|
作者
Mastromatteo, I. [1 ]
Toth, B. [2 ]
Bouchaud, J-P. [2 ]
机构
[1] Ecole Polytech, Ctr Math Appl, CNRS, UMR7641, F-91128 Palaiseau, France
[2] Capital Fund Management, F-75007 Paris, France
关键词
2-SPECIES ANNIHILATION; REACTION FRONT; ONE-DIMENSION; STEADY-STATE; FLUCTUATIONS; MARKET;
D O I
10.1103/PhysRevLett.113.268701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the reaction-diffusion model A + B -> empty set in order to study the impact of an excess of A (or B) at the reaction front. We provide an exact solution of the model, which shows that the linear response breaks down: the average displacement of the reaction front grows as the square root of the imbalance. We argue that this model provides a highly simplified but generic framework to understand the square-root impact of large orders in financial markets.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Learning Reaction-Diffusion Models for Image Inpainting
    Yu, Wei
    Heber, Stefan
    Pock, Thomas
    [J]. PATTERN RECOGNITION, GCPR 2015, 2015, 9358 : 356 - 367
  • [32] Propagation and reaction-diffusion models with free boundaries
    Du, Yihong
    [J]. BULLETIN OF MATHEMATICAL SCIENCES, 2022, 12 (01)
  • [33] Mathematical properties of models of the reaction-diffusion type
    Beccaria, M.
    Soliani, G.
    [J]. Physica A: Statistical Mechanics and its Applications, 1998, 260 (3-4): : 301 - 337
  • [34] ANALYSIS OF PROPAGATION FOR IMPULSIVE REACTION-DIFFUSION MODELS
    Fazly, Mostafa
    Lewis, Mark
    Wang, Hao
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2020, 80 (01) : 521 - 542
  • [35] Multi-shocks in reaction-diffusion models
    Arabsalmani, M.
    Aghamohammadi, A.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2007, 55 (04): : 439 - 446
  • [36] Reaction-diffusion models for morphological patterning of hESCs
    Bedekar, Prajakta
    Timofeyev, Ilya
    Warmflash, Aryeh
    Perepelitsa, Misha
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2021, 83 (05)
  • [37] Reaction-diffusion models with large advection coefficients
    Bezuglyy, Andriy
    Lou, Yuan
    [J]. APPLICABLE ANALYSIS, 2010, 89 (07) : 983 - 1004
  • [38] Reaction-diffusion Cellular Neural Network models
    Slavova, Angela
    [J]. PROCEEDINGS OF THE 9TH WSEAS INTERNATIONAL CONFERENCE ON NEURAL NETWORKS (NN' 08): ADVANCED TOPICS ON NEURAL NETWORKS, 2008, : 63 - 66
  • [39] NONLINEAR REACTION-DIFFUSION MODELS FOR INTERACTING POPULATIONS
    WILLIAMS, SA
    CHOW, PL
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (05): : A529 - A529
  • [40] Parallel solution of cardiac reaction-diffusion models
    Pavarino, LF
    Colli-Franzone, P
    [J]. DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING, 2005, 40 : 669 - 676