Anomalous Impact in Reaction-Diffusion Financial Models

被引:25
|
作者
Mastromatteo, I. [1 ]
Toth, B. [2 ]
Bouchaud, J-P. [2 ]
机构
[1] Ecole Polytech, Ctr Math Appl, CNRS, UMR7641, F-91128 Palaiseau, France
[2] Capital Fund Management, F-75007 Paris, France
关键词
2-SPECIES ANNIHILATION; REACTION FRONT; ONE-DIMENSION; STEADY-STATE; FLUCTUATIONS; MARKET;
D O I
10.1103/PhysRevLett.113.268701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the reaction-diffusion model A + B -> empty set in order to study the impact of an excess of A (or B) at the reaction front. We provide an exact solution of the model, which shows that the linear response breaks down: the average displacement of the reaction front grows as the square root of the imbalance. We argue that this model provides a highly simplified but generic framework to understand the square-root impact of large orders in financial markets.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Multi-shocks in reaction-diffusion models
    M. Arabsalmani
    A. Aghamohammadi
    [J]. The European Physical Journal B, 2007, 55 : 439 - 446
  • [22] ON IMPULSIVE REACTION-DIFFUSION MODELS IN HIGHER DIMENSIONS
    Fazly, Mostafa
    Lewis, Mark
    Wang, Hao
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2017, 77 (01) : 224 - 246
  • [23] Analytically solvable models of reaction-diffusion systems
    Zemskov, EP
    Kassner, K
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2004, 25 (03) : 361 - 367
  • [24] Anomalous dimension in a two-species reaction-diffusion system
    Vollmayr-Lee, Benjamin
    Hanson, Jack
    McIsaac, R. Scott
    Hellerick, Joshua D.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (03)
  • [25] Mathematical properties of models of the reaction-diffusion type
    Beccaria, M
    Soliani, G
    [J]. PHYSICA A, 1998, 260 (3-4): : 301 - 337
  • [26] Validation and calibration of models for reaction-diffusion systems
    Dilao, R
    Sainhas, J
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (06): : 1163 - 1182
  • [27] Anomalous reaction-diffusion as a model of nonexponential DNA escape kinetics
    Chatterjee, Debarati
    Cherayil, Binny J.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (02):
  • [28] Blow Up of Solutions of a Nonlinear Anomalous Reaction-Diffusion System
    Aroldo Pérez
    José Villa-Morales
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2021, 52 : 791 - 802
  • [29] Phase transition of triplet reaction-diffusion models
    Odor, G
    [J]. PHYSICAL REVIEW E, 2006, 73 (04):
  • [30] Invariants of reaction-diffusion cellular automata models
    Bandman, O. L.
    [J]. PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2012, 17 (03): : 108 - 120