Digit frequencies and Bernoulli convolutions

被引:0
|
作者
Kempton, Tom [1 ]
机构
[1] Univ St Andrews, Dept Math, St Andrews KY16 9SS, Fife, Scotland
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2014年 / 25卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
Bernoulli convolutions; Beta-expansions; Ergodic theory; MULTIFRACTAL ANALYSIS; NUMERATION; ENTROPY; REPRESENTATIONS; NUMBERS;
D O I
10.1016/j.indag.2014.04.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that when beta is a Pisot number, the corresponding Bernoulli convolution v(beta) has Hausdorff dimension less than 1, i.e. that there exists a set A(beta) with v(beta)(A(beta)) = 1 and dim(H) (A(beta)) < 1. We show explicitly how to construct for each Pisot number beta such a set A beta. (C) 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V.. All rights reserved.
引用
下载
收藏
页码:832 / 842
页数:11
相关论文
共 50 条
  • [31] Families of Spectral Sets for Bernoulli Convolutions
    Jorgensen, Palle E. T.
    Kornelson, Keri A.
    Shuman, Karen L.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (03) : 431 - 456
  • [32] Spectrality of Moran-Type Bernoulli Convolutions
    Deng, Qi-Rong
    Li, Ming-Tian
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (04)
  • [33] Finite orbits in multivalued maps and Bernoulli convolutions
    Bandt, Christoph
    ADVANCES IN MATHEMATICS, 2018, 324 : 437 - 485
  • [34] Spectra of Bernoulli convolutions as multipliers in LP on the circle
    Sidorov, N
    Solomyak, B
    DUKE MATHEMATICAL JOURNAL, 2003, 120 (02) : 353 - 370
  • [35] ON INHOMOGENEOUS BERNOULLI CONVOLUTIONS AND RANDOM POWER SERIES
    Bisbas, Antonios
    Neunhaeuserer, Jorg
    REAL ANALYSIS EXCHANGE, 2010, 36 (01) : 213 - 222
  • [36] ABSOLUTE CONTINUITY OF BERNOULLI CONVOLUTIONS FOR ALGEBRAIC PARAMETERS
    Varju, Peter P.
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 32 (02) : 351 - 397
  • [37] Almost sure absolute continuity of Bernoulli convolutions
    Bjorklund, Michael
    Schnellmann, Daniel
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (03): : 888 - 893
  • [38] ABSOLUTE CONTINUITY OF BERNOULLI CONVOLUTIONS, A SIMPLE PROOF
    Peres, Yuval
    Solomyak, Boris
    MATHEMATICAL RESEARCH LETTERS, 1996, 3 (02) : 231 - 239
  • [39] ON DIGIT FREQUENCIES IN β-EXPANSIONS
    Boyland, Philip
    de Carvalho, Andre
    Hall, Toby
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (12) : 8633 - 8674
  • [40] On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions
    Shmerkin, Pablo
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (03) : 946 - 958