ON INHOMOGENEOUS BERNOULLI CONVOLUTIONS AND RANDOM POWER SERIES

被引:0
|
作者
Bisbas, Antonios [1 ]
Neunhaeuserer, Jorg [2 ]
机构
[1] Technol Educ Inst West Macedonia, Sch Technol Applicat, Gen Sci Dept, Kila 50100, Kozani, Greece
[2] Tech Univ Clausthal, Dept Math, D-38678 Clausthal Zellerfeld, Germany
关键词
inhomogeneous Bernoulli convolution; random power series; absolute continuity; singularity; Pisot numbers;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the results of Peres and Solomyak on absolute continuity and singularity of homogeneous Bernoulli convolutions to inhomogeneous ones and generalize the result to random power series given by inhomogeneous Markov chains. In addition we prove an Erdos-Salem type theorem for inhomogeneous Bernoulli convolutions.
引用
收藏
页码:213 / 222
页数:10
相关论文
共 50 条
  • [1] Spectra of Bernoulli convolutions and random convolutions
    Fu, Yan-Song
    He, Xing-Gang
    Wen, Zhi-Xiong
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 116 : 105 - 131
  • [2] On random Bernoulli convolutions
    Persson, Tomas
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2010, 25 (02): : 203 - 213
  • [3] TRANSLATION AND POWER INDEPENDENCE FOR BERNOULLI CONVOLUTIONS
    BROWN, G
    MORAN, W
    [J]. COLLOQUIUM MATHEMATICUM, 1973, 27 (02) : 301 - 313
  • [4] Convergence of Mock Fourier Series on Generalized Bernoulli Convolutions
    Fu, Yan-Song
    Tang, Min-Wei
    Wen, Zhi-Ying
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2022, 179 (01)
  • [5] Convergence of Mock Fourier Series on Generalized Bernoulli Convolutions
    Yan-Song Fu
    Min-Wei Tang
    Zhi-Ying Wen
    [J]. Acta Applicandae Mathematicae, 2022, 179
  • [6] On the distribution function of a random power series with Bernoulli variables as coefficients
    Sugiyama, H
    Huzii, A
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) : 2007 - 2008
  • [7] Notes on Bernoulli convolutions
    Solomyak, B
    [J]. FRACTAL GEOMETRY AND APPLICATIONS: A JUBILEE OF BENOIT MANDELBROT - ANALYSIS, NUMBER THEORY, AND DYNAMICAL SYSTEMS, PT 1, 2004, 72 : 207 - 230
  • [8] On symmetric Bernoulli convolutions
    Kawata, T
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1940, 62 : 792 - 794
  • [9] ON THE DIMENSION OF BERNOULLI CONVOLUTIONS
    Breuillard, Emmanuel
    Varju, Peter P.
    [J]. ANNALS OF PROBABILITY, 2019, 47 (04): : 2582 - 2617
  • [10] RANDOM WALKS ON Z WITH EXPONENTIALLY INCREASING STEP LENGTH AND BERNOULLI CONVOLUTIONS
    Neunhaeuserer, Joerg
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (06) : 1993 - 2003