Critical slowing down in biochemical networks with feedback
被引:8
|
作者:
Byrd, Tommy A.
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USAPurdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
Byrd, Tommy A.
[1
]
Erez, Amir
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USAPurdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
Erez, Amir
[2
]
Vogel, Robert M.
论文数: 0引用数: 0
h-index: 0
机构:
IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USAPurdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
Vogel, Robert M.
[3
]
Peterson, Curtis
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USAPurdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
Peterson, Curtis
[1
,4
,5
]
Vennettilli, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USAPurdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
Vennettilli, Michael
[1
]
Altan-Bonnet, Gregoire
论文数: 0引用数: 0
h-index: 0
机构:
NCI, Immunodynam Grp, Canc & Inflammat Program, NIH, Bethesda, MD 20814 USAPurdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
Altan-Bonnet, Gregoire
[6
]
Mugler, Andrew
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USAPurdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
Mugler, Andrew
[1
]
机构:
[1] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
[2] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[3] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[4] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
[5] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
Near a bifurcation point, the response time of a system is expected to diverge due to the phenomenon of critical slowing down. We investigate critical slowing down in well-mixed stochastic models of biochemical feedback by exploiting a mapping to the mean-field Ising universality class. We analyze the responses to a sudden quench and to continuous driving in the model parameters. In the latter case, we demonstrate that our class of models exhibits the Kibble-Zurek collapse, which predicts the scaling of hysteresis in cellular responses to gradual perturbations. We discuss the implications of our results in terms of the tradeoff between a precise and a fast response. Finally, we use our mapping to quantify critical slowing down in T cells, where the addition of a drug is equivalent to a sudden quench in parameter space.