On classification of cubic and quartic surfaces

被引:0
|
作者
Degtyarev, VM [1 ]
Krylov, IP [1 ]
机构
[1] St Petersburg State Univ, Dept Engn Comp Graph, St Petersburg 191065, Russia
关键词
cubic surface; quartic surface;
D O I
10.1117/12.555536
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this contribution we report on a set of methods to obtain and classify new algebraic surfaces of three variables of third and forth degree. These methods are used to create a software library of cubic and quartic surfaces that can be further expanded with surfaces of higher degrees. There is a short observation of what is available in literature regarding these surfaces, and there are three methods to generate new surfaces. These surfaces are to be studied, classified and they can be used in CAD and other systems for modeling real-life objects, artificial constructions and futuristic elements.
引用
收藏
页码:287 / 291
页数:5
相关论文
共 50 条
  • [31] KINKS IN SYSTEMS WITH CUBIC AND QUARTIC ANHARMONICITY
    KASHCHEEV, VN
    THEORETICAL AND MATHEMATICAL PHYSICS, 1988, 74 (01) : 43 - 48
  • [32] On some cubic or quartic algebraic units
    Louboutin, Stephane
    JOURNAL OF NUMBER THEORY, 2010, 130 (04) : 956 - 960
  • [33] Cubic equation of state as a quartic in disguise
    Kukreja, Naman
    Ghoderao, Pradnya
    Dalvi, Vishwanath H.
    Narayan, Mohan
    FLUID PHASE EQUILIBRIA, 2021, 531
  • [34] Cubic points on the Klein quartic curve
    Sall, O
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (10): : 931 - 934
  • [35] Quartic unexpected curves and surfaces
    Thomas Bauer
    Grzegorz Malara
    Tomasz Szemberg
    Justyna Szpond
    manuscripta mathematica, 2020, 161 : 283 - 292
  • [36] Seshadri constants of quartic surfaces
    Thomas Bauer
    Mathematische Annalen, 1997, 309 : 475 - 481
  • [37] Separation of periods of quartic surfaces
    Lairez, Pierre
    Sertoez, Emre Can
    ALGEBRA & NUMBER THEORY, 2023, 17 (10) : 1753 - 1778
  • [38] Quartic unexpected curves and surfaces
    Bauer, Thomas
    Malara, Grzegorz
    Szemberg, Tomasz
    Szpond, Justyna
    MANUSCRIPTA MATHEMATICA, 2020, 161 (3-4) : 283 - 292
  • [39] ON ARITHMETICAL PROPERTIES OF QUARTIC SURFACES
    Segre, B.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1947, 49 : 353 - 395
  • [40] Igusa quartic and Steiner surfaces
    Mukai, Shigeru
    COMPACT MODULI SPACES AND VECTOR BUNDLES, 2012, 564 : 205 - 210