Igusa quartic and Steiner surfaces

被引:6
|
作者
Mukai, Shigeru [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
来源
关键词
D O I
10.1090/conm/564/11171
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Igusa quartic has a morphism of degree 8 onto itself. Via this self-morphism, the Satake compactification A(1)(s) (2) of the moduli of principally polarized abelian surfaces with (lope! triples (as well as usual p.p.a.s.'s with full level-2 structures) is isomorphic to the Igusa quartic. We also determine the action of Fricke involution on the moduli.
引用
收藏
页码:205 / 210
页数:6
相关论文
共 50 条
  • [1] The Igusa Quartic and the Prym Map, with Some Rational Moduli
    Verra, Alessandro
    RATIONALITY OF VARIETIES, 2021, 342 : 403 - 433
  • [2] Igusa Class Polynomials, Embeddings of Quartic CM Fields, and Arithmetic Intersection Theory
    Grundman, Helen
    Johnson-Leung, Jennifer
    Lauter, Kristin
    Salerno, Adriana
    Viray, Bianca
    Wittenborn, Erika
    WIN - WOMEN IN NUMBERS: RESEARCH DIRECTIONS IN NUMBER THEORY, 2011, 60 : 35 - +
  • [3] Lines on quartic surfaces
    Alex Degtyarev
    Ilia Itenberg
    Ali Sinan Sertöz
    Mathematische Annalen, 2017, 368 : 753 - 809
  • [4] Lines on quartic surfaces
    Degtyarev, Alex
    Itenberg, Ilia
    Sertoz, Ali Sinan
    MATHEMATISCHE ANNALEN, 2017, 368 (1-2) : 753 - 809
  • [5] Supersingular quartic surfaces
    Jang, Junmyeong
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (11) : 4701 - 4707
  • [6] On finite Steiner surfaces
    Zanella, Corrado
    DISCRETE MATHEMATICS, 2012, 312 (03) : 652 - 656
  • [7] On classification of cubic and quartic surfaces
    Degtyarev, VM
    Krylov, IP
    SEVENTH INTERNATIONAL WORKSHOP ON NONDESTRUCTIVE TESTING AND COMPUTER SIMULATIONS IN SCIENCE AND ENGINEERING, 2004, 5400 : 287 - 291
  • [8] Quartic unexpected curves and surfaces
    Thomas Bauer
    Grzegorz Malara
    Tomasz Szemberg
    Justyna Szpond
    manuscripta mathematica, 2020, 161 : 283 - 292
  • [9] Seshadri constants of quartic surfaces
    Thomas Bauer
    Mathematische Annalen, 1997, 309 : 475 - 481
  • [10] Separation of periods of quartic surfaces
    Lairez, Pierre
    Sertoez, Emre Can
    ALGEBRA & NUMBER THEORY, 2023, 17 (10) : 1753 - 1778