VARIABLE SELECTION IN ROBUST JOINT MEAN AND COVARIANCE MODEL FOR LONGITUDINAL DATA ANALYSIS

被引:18
|
作者
Zheng, Xueying [1 ]
Fung, Wing Kam [2 ]
Zhu, Zhongyi [3 ]
机构
[1] Fudan Univ, Dept Biostat, Shanghai 200433, Peoples R China
[2] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
[3] Fudan Univ, Dept Stat, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Covariance matrix; penalized generalized estimating equation; longitudinal data; modified cholesky decomposition; robustness; variable selection; GENERALIZED LINEAR-MODELS; ESTIMATING EQUATIONS; SEMIPARAMETRIC ESTIMATION; REGRESSION-MODELS; ORACLE PROPERTIES; MATRICES; LIKELIHOOD; DIAGNOSTICS;
D O I
10.5705/ss.2011.251
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In longitudinal data analysis, a correct specification of the within-subject covariance matrix cultivates an efficient estimation for mean regression coefficients. In this article, we consider robust variable selection method in a joint mean and covariance model. We propose a set of penalized robust generalized estimating equations to simultaneously estimate the mean regression coefficients, the generalized autoregressive coefficients, and innovation variances introduced by the modified Cholesky decomposition. The set of estimating equations select important covariate variables in both mean and covariance models together with the estimating procedure. Under some regularity conditions, we develop the oracle property of the proposed robust variable selection method. Finally, a simulation study and a detailed data analysis are carried out to assess and illustrate the small sample performance; they show that the proposed method performs favorably by combining the robustifying and penalized estimating techniques together in the joint mean and covariance model.
引用
收藏
页码:515 / 531
页数:17
相关论文
共 50 条
  • [31] Variable selection in robust semiparametric modeling for longitudinal data
    Kangning Wang
    Lu Lin
    Journal of the Korean Statistical Society, 2014, 43 : 303 - 314
  • [32] Variable selection in robust regression models for longitudinal data
    Fan, Yali
    Qin, Guoyou
    Zhu, Zhongyi
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 109 : 156 - 167
  • [33] Variable selection in robust semiparametric modeling for longitudinal data
    Wang, Kangning
    Lin, Lu
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2014, 43 (02) : 303 - 314
  • [34] Joint mean-covariance model in generalized partially linear varying coefficient models for longitudinal data
    Qin, Guoyou
    Mao, Jie
    Zhu, Zhongyi
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (06) : 1166 - 1182
  • [35] Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation
    Pourahmadi, M
    BIOMETRIKA, 1999, 86 (03) : 677 - 690
  • [36] Joint estimation for single index mean-covariance models with longitudinal data
    Guo, Chaohui
    Yang, Hu
    Lv, Jing
    Wu, Jibo
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2016, 45 (04) : 526 - 543
  • [37] jmcm: An R Package for Joint Mean-Covariance Modeling of Longitudinal Data
    Pan, Jianxin
    Pan, Yi
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 82 (09): : 1 - 29
  • [38] Semiparametric Mean-Covariance Regression Analysis for Longitudinal Data
    Leng, Chenlei
    Zhang, Weiping
    Pan, Jianxin
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 181 - 193
  • [39] Variable selection in joint modelling of the mean and variance for hierarchical data
    Charalambous, Christiana
    Pan, Jianxin
    Tranmer, Mark
    STATISTICAL MODELLING, 2015, 15 (01) : 24 - 50
  • [40] Multivariate contaminated normal mixture regression modeling of longitudinal data based on joint mean-covariance model
    Niu, Xiaoyu
    Tian, Yuzhu
    Tang, Manlai
    Tian, Maozai
    STATISTICAL ANALYSIS AND DATA MINING, 2024, 17 (01)