Semiparametric Mean-Covariance Regression Analysis for Longitudinal Data

被引:85
|
作者
Leng, Chenlei [1 ]
Zhang, Weiping [2 ]
Pan, Jianxin [3 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, SG-117546 Singapore, Singapore
[2] Univ Sci & Technol China, Dept Stat & Finance, Hefei 230026, Anhui, Peoples R China
[3] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Covariance misspecification; Efficiency; Generalized estimating equation; Longitudinal data; Modified Cholesky decomposition; Semiparametric models; GENERALIZED ESTIMATING EQUATIONS; MODELS; MATRICES; SPLINE;
D O I
10.1198/jasa.2009.tm08485
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Efficient estimation of the regression coefficients in longitudinal data analysis requires a correct specification of the covariance structure Existing approaches usually focus on model no the mean with specification of certain covariance structures, which may lead to inefficient or biased estimators of parameters in the mean it misspecification occurs In this article. we propose a data-driven approach based on semiparametric regression models tot the mean and the covariance simultaneously. motivated by the modified Cholesky decomposition A regression spline-based approach using generalized estimating equations is developed to estimate the parameters in the mean and the covariance The resulting estimators for the regression coefficients in both the mean and the covariance are shown to be consistent and asymptotically normally distributed In addition. the nonparametric functions in these two structures are estimated at their optimal rate of convergence Simulation studies and a real data analysis show that the proposed approach yields highly efficient estimators for the parameters in the mean. and provides parsimonious estimation for the covariance structure Supplemental materials for the article are available online
引用
收藏
页码:181 / 193
页数:13
相关论文
共 50 条
  • [1] Robust variable selection in semiparametric mean-covariance regression for longitudinal data analysis
    Guo, Chaohui
    Yang, Hu
    Lv, Jing
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 245 : 343 - 356
  • [2] Bayesian Joint Semiparametric Mean-Covariance Modeling for Longitudinal Data
    Liu, Meimei
    Zhang, Weiping
    Chen, Yu
    [J]. COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2019, 7 (03) : 253 - 267
  • [3] Analysis of longitudinal data with semiparametric varying-coefficient mean-covariance models
    Zhao, Yan-Yong
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 363 : 485 - 502
  • [4] Varying-coefficient mean-covariance regression analysis for longitudinal data
    Liu, Shu
    Li, Guodong
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 160 : 89 - 106
  • [5] Semiparametric Bayesian Inference for Mean-Covariance Regression Models
    Han Jun YU
    Jun Shan SHEN
    Zhao Nan LI
    Xiang Zhong FANG
    [J]. Acta Mathematica Sinica,English Series, 2017, (06) : 748 - 760
  • [6] Semiparametric Bayesian Inference for Mean-Covariance Regression Models
    Han Jun YU
    Jun Shan SHEN
    Zhao Nan LI
    Xiang Zhong FANG
    [J]. ActaMathematicaSinica., 2017, 33 (06) - 760
  • [7] Joint semiparametric mean-covariance model in longitudinal study
    MAO Jie & ZHU ZhongYi Department of Statistics
    [J]. Science China Mathematics, 2011, 54 (01) : 145 - 164
  • [8] Semiparametric Bayesian Inference for Mean-Covariance Regression Models
    Yu, Han Jun
    Shen, Jun Shan
    Li, Zhao Nan
    Fang, Xiang Zhong
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (06) : 748 - 760
  • [9] Semiparametric Bayesian inference for mean-covariance regression models
    Han Jun Yu
    Jun Shan Shen
    Zhao Nan Li
    Xiang Zhong Fang
    [J]. Acta Mathematica Sinica, English Series, 2017, 33 : 748 - 760
  • [10] Joint semiparametric mean-covariance model in longitudinal study
    Jie Mao
    ZhongYi Zhu
    [J]. Science China Mathematics, 2011, 54 : 145 - 164