Semiparametric Bayesian Inference for Mean-Covariance Regression Models

被引:0
|
作者
Han Jun YU [1 ]
Jun Shan SHEN [2 ]
Zhao Nan LI [1 ]
Xiang Zhong FANG [1 ]
机构
[1] School of Mathematical Sciences,Peking University
[2] School of Statistics,Capital University of Economics and Business
基金
中国国家自然科学基金;
关键词
Clustered data; Dirichlet process; empirical likelihood; moment constraints; nonparametric Bayes;
D O I
暂无
中图分类号
O212 [数理统计];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a Bayesian semiparametric mean-covariance regression model with known covariance structures. A mixture model is used to describe the potential non-normal distribution of the regression errors. Moreover, an empirical likelihood adjusted mixture of Dirichlet process model is constructed to produce distributions with given mean and variance constraints. We illustrate through simulation studies that the proposed method provides better estimations in some non-normal cases. We also demonstrate the implementation of our method by analyzing the data set from a sleep deprivation study.
引用
收藏
页码:748 / 760
页数:13
相关论文
共 50 条
  • [1] Semiparametric Bayesian Inference for Mean-Covariance Regression Models
    Han Jun YU
    Jun Shan SHEN
    Zhao Nan LI
    Xiang Zhong FANG
    Acta Mathematica Sinica, 2017, 33 (06) : 748 - 760
  • [2] Semiparametric Bayesian Inference for Mean-Covariance Regression Models
    Yu, Han Jun
    Shen, Jun Shan
    Li, Zhao Nan
    Fang, Xiang Zhong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (06) : 748 - 760
  • [3] Semiparametric Bayesian inference for mean-covariance regression models
    Han Jun Yu
    Jun Shan Shen
    Zhao Nan Li
    Xiang Zhong Fang
    Acta Mathematica Sinica, English Series, 2017, 33 : 748 - 760
  • [4] Semiparametric Mean-Covariance Regression Analysis for Longitudinal Data
    Leng, Chenlei
    Zhang, Weiping
    Pan, Jianxin
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 181 - 193
  • [5] Bayesian Joint Semiparametric Mean-Covariance Modeling for Longitudinal Data
    Liu, Meimei
    Zhang, Weiping
    Chen, Yu
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2019, 7 (03) : 253 - 267
  • [6] Semiparametric Bayesian inference for regression models
    Seifu, Y
    Severini, TA
    Tanner, MA
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (04): : 719 - 734
  • [7] Robust variable selection in semiparametric mean-covariance regression for longitudinal data analysis
    Guo, Chaohui
    Yang, Hu
    Lv, Jing
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 245 : 343 - 356
  • [8] Joint semiparametric mean-covariance model in longitudinal study
    MAO Jie & ZHU ZhongYi Department of Statistics
    ScienceChina(Mathematics), 2011, 54 (01) : 145 - 164
  • [9] Analysis of longitudinal data with semiparametric varying-coefficient mean-covariance models
    Zhao, Yan-Yong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 363 : 485 - 502
  • [10] Joint semiparametric mean-covariance model in longitudinal study
    Mao Jie
    Zhu ZhongYi
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (01) : 145 - 164