Modeling and Pareto based multi-objective optimization of wavy fin-and-elliptical tube heat exchangers using CFD and NSGA-II algorithm

被引:102
|
作者
Damavandi, Mohammad Darvish [1 ]
Forouzanmehr, Mostafa [1 ]
Safikhani, Hamed [2 ]
机构
[1] Univ Tehran, Coll Engn, Sch Mech Engn, Tehran, Iran
[2] Arak Univ, Fac Engn, Dept Mech Engn, Arak 3815688349, Iran
关键词
Multi objective optimization; Wavy fin; Elliptical tube; GMDH; NSGA-II; AIR-SIDE PERFORMANCE; FRICTION CHARACTERISTICS; TRANSFER COEFFICIENT; SURFACE; LOUVER; FLOW;
D O I
10.1016/j.applthermaleng.2016.09.120
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, a multi-objective optimization (MOO) of wavy fin-and-elliptical tube heat exchangers has been performed by using Computational Fluid Dynamics (CFD), Artificial Neural Network (ANN) of Group Method of Data Handling (GMDH) type, and Non-Dominated Sorting Genetic Algorithm II (NSGA-II). This multi-objective optimization is aimed at achieving maximum heat transfer and minimum pressure drop. For this purpose, the considered objective functions, Colbum factor (j) and friction factor (f) are optimized with regards to the design variables (four variables). The CFD results are validated by means of experimental findings. Polynomials of the GMDH type neural network are formed based on the CFD results. These polynomials relate the objective functions to the design variables. Ultimately, the NSGA-II algorithm obtains the Pareto optimal points by using the input data from the neural network. From among the optimal points, several points with unique features are introduced and explained. The investigation of optimal points indicates that with a slight reduction in heat transfer, pressure drop can be reduced considerably. By combining and simultaneously using the CFD, neural network and NSGA-II optimization algorithm, very useful and valuable results are obtained; which otherwise couldn't be achieved without the mutual use of these techniques. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:325 / 339
页数:15
相关论文
共 50 条
  • [41] Multi-objective configuration optimization of modularized product based on NSGA-II
    State Key Lab. of CAD and CG, Zhejiang University, Hangzhou 310027, China
    Jisuanji Jicheng Zhizao Xitong, 2007, 11 (2092-2098+2161):
  • [42] Multi-objective optimization of liquid metal bearing based on NSGA-II
    Tang, Siwei
    Zhang, Guohua
    Zheng, Yueqing
    Xie, Gongnan
    Cui, Hailong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2025, 239 (02) : 151 - 162
  • [43] Multi-objective Optimization for AUV Conceptual Design Based on NSGA-II
    Xia, Guoqing
    Liu, Caiyun
    Chen, Xinghua
    OCEANS 2016 - SHANGHAI, 2016,
  • [44] Multi-Objective Optimization of Interior Ballistic Performance Using NSGA-II
    Li, Kejing
    Zhang, Xiaobing
    PROPELLANTS EXPLOSIVES PYROTECHNICS, 2011, 36 (03) : 282 - 290
  • [45] A Developed NSGA-II Algorithm for Multi-objective Chiller Loading Optimization Problems
    Duan, Pei-yong
    Wang, Yong
    Sang, Hong-yan
    Wang, Cun-gang
    Qi, Min-yong
    Li, Jun-qing
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2016, PT I, 2016, 9771 : 489 - 497
  • [46] Multi-objective optimization of FCC separation system based on NSGA-II
    Liu, Yingjie
    Chu, Menghao
    Ye, Qing
    Li, Jinlong
    Han, Deqiu
    CHEMICAL ENGINEERING SCIENCE, 2025, 302
  • [47] Multi-objective optimization of a composite orthotropic bridge with RSM and NSGA-II algorithm
    Xiang, Ze
    Zhu, Zhiwen
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2022, 188
  • [48] Multi-Objective Optimization of Two-Stage Centrifugal Pump using NSGA-II Algorithm
    Benturki, M.
    Dizene, R.
    Ghenaiet, A.
    JOURNAL OF APPLIED FLUID MECHANICS, 2018, 11 (04) : 929 - 943
  • [49] Multi-objective structural optimization of a wind turbine blade using NSGA-II algorithm and FSI
    Ozkan, Ramazan
    Genc, Mustafa Serdar
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2021, 93 (06): : 1029 - 1042
  • [50] Multi-objective optimization research of printed circuit heat exchanger based on RSM and NSGA-II
    Lv, Junshuai
    Sun, Yuwei
    Lin, Jie
    Luo, Xinyu
    Li, Peiyue
    APPLIED THERMAL ENGINEERING, 2024, 254